Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.
Nano Lett. 2012 Jul 11;12(7):3674-81. doi: 10.1021/nl301435r. Epub 2012 Jun 19.
We demonstrate a new light trapping technique that exploits dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost 1 order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick hydrogenated amorphous silicon (a-Si:H) thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical antireflective coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and nonabsorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances (LMRs) in the semiconductor part and antireflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar-to-fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors, and solid-state lighting diodes.
我们展示了一种新的光捕获技术,该技术利用介电核壳光学天线来强烈增强太阳能吸收。这种方法可以将太阳能电池中活性材料的厚度降低近一个数量级,而不会牺牲太阳能吸收能力。例如,它可以使 70nm 厚的氢化非晶硅(a-Si:H)薄膜吸收超过带隙的 90%的入射太阳辐射,而在典型的抗反射涂层薄膜中,这需要 400nm 的厚度。这种强烈的增强来自于图案化核壳纳米结构中的受控光学天线效应,该结构由吸收半导体和不吸收介电材料组成。这种核壳光学天线得益于半导体部分中的泄漏模式共振(LMR)和介电部分中的抗反射效应所产生的增强的倍增。我们研究了这种增强倍增的基本机制,并证明了核壳结构中半导体和介电部分的尺寸比是优化增强的关键。通过实现对太阳能的强烈吸收增强,这种方法有望降低太阳能转换器件(包括太阳能电池和太阳能燃料系统)的成本并提高其效率。它通常可以应用于广泛的无机和有机活性材料。这种介电核壳天线还可以在其他光子器件中找到应用,如光电探测器、传感器和固态照明二极管。