Suppr超能文献

通过在高渗条件下对酿酒酵母进行适应性进化来降低乙醇产量并提高甘油生成量。

Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions.

作者信息

Tilloy Valentin, Ortiz-Julien Anne, Dequin Sylvie

机构信息

INRA, UMR1083 SPO, Montpellier, France.

出版信息

Appl Environ Microbiol. 2014 Apr;80(8):2623-32. doi: 10.1128/AEM.03710-13. Epub 2014 Feb 14.

Abstract

There is a strong demand from the wine industry for methodologies to reduce the alcohol content of wine without compromising wine's sensory characteristics. We assessed the potential of adaptive laboratory evolution strategies under hyperosmotic stress for generation of Saccharomyces cerevisiae wine yeast strains with enhanced glycerol and reduced ethanol yields. Experimental evolution on KCl resulted, after 200 generations, in strains that had higher glycerol and lower ethanol production than the ancestral strain. This major metabolic shift was accompanied by reduced fermentative capacities, suggesting a trade-off between high glycerol production and fermentation rate. Several evolved strains retaining good fermentation performance were selected. These strains produced more succinate and 2,3-butanediol than the ancestral strain and did not accumulate undesirable organoleptic compounds, such as acetate, acetaldehyde, or acetoin. They survived better under osmotic stress and glucose starvation conditions than the ancestral strain, suggesting that the forces that drove the redirection of carbon fluxes involved a combination of osmotic and salt stresses and carbon limitation. To further decrease the ethanol yield, a breeding strategy was used, generating intrastrain hybrids that produced more glycerol than the evolved strain. Pilot-scale fermentation on Syrah using evolved and hybrid strains produced wine with 0.6% (vol/vol) and 1.3% (vol/vol) less ethanol, more glycerol and 2,3-butanediol, and less acetate than the ancestral strain. This work demonstrates that the combination of adaptive evolution and breeding is a valuable alternative to rational design for remodeling the yeast metabolic network.

摘要

葡萄酒行业强烈需要在不损害葡萄酒感官特性的情况下降低葡萄酒酒精含量的方法。我们评估了在高渗胁迫下采用适应性实验室进化策略来培育甘油产量增加、乙醇产量降低的酿酒酵母葡萄酒酵母菌株的潜力。在KCl上进行200代实验进化后,得到的菌株甘油产量高于亲代菌株,乙醇产量低于亲代菌株。这种主要的代谢转变伴随着发酵能力的降低,表明高甘油产量和发酵速率之间存在权衡。我们挑选了几种发酵性能良好的进化菌株。这些菌株琥珀酸和2,3-丁二醇的产量高于亲代菌株,且不会积累如乙酸、乙醛或乙偶姻等不良感官化合物。它们在渗透胁迫和葡萄糖饥饿条件下比亲代菌株存活得更好,这表明驱动碳通量重新定向的因素是渗透胁迫、盐胁迫和碳限制的综合作用。为了进一步降低乙醇产量,我们采用了一种育种策略,培育出了比进化菌株产生更多甘油的菌株内杂交种。使用进化菌株和杂交菌株对西拉葡萄进行中试规模发酵,所生产的葡萄酒乙醇含量比亲代菌株低0.6%(体积/体积)和1.3%(体积/体积),甘油和2,3-丁二醇含量更高,乙酸含量更低。这项工作表明,适应性进化和育种相结合是重塑酵母代谢网络的合理设计的一种有价值的替代方法。

相似文献

2
Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts.
Appl Environ Microbiol. 2012 Sep;78(17):6068-77. doi: 10.1128/AEM.01279-12. Epub 2012 Jun 22.
3
Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
Appl Environ Microbiol. 2009 May;75(10):3196-205. doi: 10.1128/AEM.02157-08. Epub 2009 Mar 27.
4
Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.
Appl Environ Microbiol. 2006 Jul;72(7):4688-94. doi: 10.1128/AEM.02975-05.
6
Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
Int J Food Microbiol. 2008 Mar 20;122(3):312-20. doi: 10.1016/j.ijfoodmicro.2007.12.023. Epub 2008 Jan 4.
7
Yeast's balancing act between ethanol and glycerol production in low-alcohol wines.
Microb Biotechnol. 2017 Mar;10(2):264-278. doi: 10.1111/1751-7915.12488. Epub 2017 Jan 13.
8
Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.
Appl Biochem Biotechnol. 2014 Aug;173(7):1940-54. doi: 10.1007/s12010-014-0978-z. Epub 2014 May 31.

引用本文的文献

1
Mouthfeel of Food and Beverages: A Comprehensive Review of Physiology, Biochemistry, and Key Sensory Compounds.
Compr Rev Food Sci Food Saf. 2025 Jul;24(4):e70223. doi: 10.1111/1541-4337.70223.
2
Dual-temperature dual-state fermentation: A novel approach to improve aroma and color characteristics of Marselan wines.
Food Chem X. 2025 Apr 9;27:102447. doi: 10.1016/j.fochx.2025.102447. eCollection 2025 Apr.
4
The effect of selected Non- yeasts and cold-contact fermentation on the production of low-alcohol marula fruit beer.
Heliyon. 2024 Jan 19;10(2):e24505. doi: 10.1016/j.heliyon.2024.e24505. eCollection 2024 Jan 30.
6
Adaptation of to High Glucose Concentrations and Its Impact on Growth Kinetics of Alcoholic Fermentations.
Microorganisms. 2024 Jul 17;12(7):1449. doi: 10.3390/microorganisms12071449.
7
Application of Strain Selection Technology in Alcoholic Beverages: A Review.
Foods. 2024 May 1;13(9):1396. doi: 10.3390/foods13091396.
8
New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii.
Appl Microbiol Biotechnol. 2024 Jan 19;108(1):153. doi: 10.1007/s00253-023-12946-x.
9
Flor Yeasts Rewire the Central Carbon Metabolism During Wine Alcoholic Fermentation.
Front Fungal Biol. 2021 Oct 18;2:733513. doi: 10.3389/ffunb.2021.733513. eCollection 2021.
10
Sensory properties of 6- and 18-month-stored wines made with pectinase-producing non-Saccharomyces yeasts.
J Food Sci. 2023 Jan;88(1):462-476. doi: 10.1111/1750-3841.16418. Epub 2022 Dec 18.

本文引用的文献

1
Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine.
Appl Environ Microbiol. 2014 Mar;80(5):1670-8. doi: 10.1128/AEM.03780-13. Epub 2013 Dec 27.
2
Evolution of quality parameters during red wine dealcoholization by osmotic distillation.
Food Chem. 2013 Sep 1;140(1-2):68-75. doi: 10.1016/j.foodchem.2013.02.059. Epub 2013 Feb 24.
4
Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts.
Appl Environ Microbiol. 2012 Sep;78(17):6068-77. doi: 10.1128/AEM.01279-12. Epub 2012 Jun 22.
5
Production technologies for reduced alcoholic wines.
J Food Sci. 2012 Jan;77(1):R25-41. doi: 10.1111/j.1750-3841.2011.02448.x. Epub 2011 Nov 10.
6
Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production.
Appl Microbiol Biotechnol. 2012 Feb;93(3):1175-84. doi: 10.1007/s00253-011-3622-7. Epub 2011 Oct 12.
7
Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration.
Science. 2011 Jun 10;332(6035):1327-30. doi: 10.1126/science.1203105.
8
Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape.
PLoS Genet. 2011 Apr;7(4):e1002056. doi: 10.1371/journal.pgen.1002056. Epub 2011 Apr 28.
9
Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution.
J Evol Biol. 2011 May;24(5):1135-53. doi: 10.1111/j.1420-9101.2011.02249.x. Epub 2011 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验