Suppr超能文献

GPD1过表达对缺乏ALD6基因的酿酒酵母商业葡萄酒酵母菌株的影响。

Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.

作者信息

Cambon Brigitte, Monteil Virginie, Remize Fabienne, Camarasa Carole, Dequin Sylvie

机构信息

UMR Sciences pour l'Oenologie, Microbiologie, INRA, 2 Place Viala, F-34060 Montpellier Cedex 1, France.

出版信息

Appl Environ Microbiol. 2006 Jul;72(7):4688-94. doi: 10.1128/AEM.02975-05.

Abstract

The utilization of Saccharomyces cerevisiae strains overproducing glycerol and with a reduced ethanol yield is a potentially valuable strategy for producing wine with decreased ethanol content. However, glycerol overproduction is accompanied by acetate accumulation. In this study, we evaluated the effects of the overexpression of GPD1, coding for glycerol-3-phosphate dehydrogenase, in three commercial wine yeast strains in which the two copies of ALD6 encoding the NADP+-dependent Mg2+-activated cytosolic acetaldehyde dehydrogenase have been deleted. Under wine fermentation conditions, the engineered industrial strains exhibit fermentation performance and growth properties similar to those of the wild type. Acetate was produced at concentrations similar to that of the wild-type strains, whereas sugar was efficiently diverted to glycerol. The ethanol yield of the GPD1 ald6 industrial strains was 15 to 20% lower than that in the controls. However, these strains accumulated acetoin at considerable levels due to inefficient reduction to 2,3-butanediol. Due to the low taste and odor thresholds of acetoin and its negative sensorial impact on wine, novel engineering strategies will be required for a proper adjustment of the metabolites at the acetaldehyde branch point.

摘要

利用过量生产甘油且乙醇产量降低的酿酒酵母菌株是生产乙醇含量降低的葡萄酒的一种潜在有价值的策略。然而,甘油的过量生产伴随着乙酸盐的积累。在本研究中,我们评估了编码甘油-3-磷酸脱氢酶的GPD1基因在三种商业葡萄酒酵母菌株中的过表达效果,这三种菌株中编码NADP⁺依赖性Mg²⁺激活的胞质乙醛脱氢酶的两个ALD6拷贝已被删除。在葡萄酒发酵条件下,工程化工业菌株表现出与野生型相似的发酵性能和生长特性。乙酸盐的产生浓度与野生型菌株相似,而糖有效地被转化为甘油。GPD1 ald6工业菌株的乙醇产量比对照低15%至20%。然而,由于还原为2,3-丁二醇的效率低下,这些菌株积累了相当数量的乙偶姻。由于乙偶姻的味觉和气味阈值较低及其对葡萄酒的负面感官影响,需要新的工程策略来适当调节乙醛分支点处的代谢物。

相似文献

1
Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.
Appl Environ Microbiol. 2006 Jul;72(7):4688-94. doi: 10.1128/AEM.02975-05.
2
Upregulation of ALD3 and GPD1 in Saccharomyces cerevisiae during Icewine fermentation.
J Appl Microbiol. 2005;99(1):112-25. doi: 10.1111/j.1365-2672.2005.02577.x.
3
Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
Appl Environ Microbiol. 2009 May;75(10):3196-205. doi: 10.1128/AEM.02157-08. Epub 2009 Mar 27.
7
Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2007 Jan;73(6):1382-6. doi: 10.1007/s00253-006-0610-4. Epub 2006 Oct 5.
9
Genetic engineering of brewing yeast to reduce the content of ethanol in beer.
FEMS Yeast Res. 2002 May;2(2):225-32. doi: 10.1111/j.1567-1364.2002.tb00087.x.
10
Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
Yeast. 2000 Mar 30;16(5):463-74. doi: 10.1002/(SICI)1097-0061(20000330)16:5<463::AID-YEA535>3.0.CO;2-3.

引用本文的文献

1
Optogenetic Modification of Glycerol Production in Wine Yeast.
ACS Synth Biol. 2025 Mar 21;14(3):719-728. doi: 10.1021/acssynbio.4c00654. Epub 2025 Feb 14.
4
Biotechnological Approaches to Lowering the Ethanol Yield during Wine Fermentation.
Biomolecules. 2021 Oct 22;11(11):1569. doi: 10.3390/biom11111569.
5
Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review.
Int J Mol Sci. 2021 Jul 20;22(14):7754. doi: 10.3390/ijms22147754.
6
Truth in wine yeast.
Microb Biotechnol. 2022 May;15(5):1339-1356. doi: 10.1111/1751-7915.13848. Epub 2021 Jun 26.
7
Thiamine: a key nutrient for yeasts during wine alcoholic fermentation.
Appl Microbiol Biotechnol. 2021 Feb;105(3):953-973. doi: 10.1007/s00253-020-11080-2. Epub 2021 Jan 6.
9
Next Generation Winemakers: Genetic Engineering in for Trendy Challenges.
Bioengineering (Basel). 2020 Oct 14;7(4):128. doi: 10.3390/bioengineering7040128.
10
Metabolic Engineering of Wine Strains of .
Genes (Basel). 2020 Aug 20;11(9):964. doi: 10.3390/genes11090964.

本文引用的文献

1
A homozygous diploid subset of commercial wine yeast strains.
Antonie Van Leeuwenhoek. 2006 Jan;89(1):27-37. doi: 10.1007/s10482-005-9006-1. Epub 2005 Dec 3.
3
Glycerol production by microbial fermentation: a review.
Biotechnol Adv. 2001 Jun;19(3):201-23. doi: 10.1016/s0734-9750(01)00060-x.
4
Genetic engineering of brewing yeast to reduce the content of ethanol in beer.
FEMS Yeast Res. 2002 May;2(2):225-32. doi: 10.1111/j.1567-1364.2002.tb00087.x.
5
The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity.
J Biol Chem. 2003 Apr 18;278(16):13984-8. doi: 10.1074/jbc.M210076200. Epub 2003 Feb 12.
8
The potential of genetic engineering for improving brewing, wine-making and baking yeasts.
Appl Microbiol Biotechnol. 2001 Sep;56(5-6):577-88. doi: 10.1007/s002530100700.
9
Characterization and functional role of Saccharomyces cerevisiae 2,3-butanediol dehydrogenase.
Chem Biol Interact. 2001 Jan 30;130-132(1-3):425-34. doi: 10.1016/s0009-2797(00)00282-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验