School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA.
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA.
Nat Commun. 2014;5:3299. doi: 10.1038/ncomms4299.
Modern technology is founded on the intimate understanding of how to utilize and control electrons. Next to electrons, nature uses phonons, quantized vibrations of an elastic structure, to carry energy, momentum and even information through solids. Phonons permeate the crystalline components of modern technology, yet in terms of technological utilization phonons are far from being on par with electrons. Here we demonstrate how phonons can be employed to render a single quantum dot pair optically transparent. This phonon-induced transparency is realized via the formation of a molecular polaron, the result of a Fano-type quantum interference, which proves that we have accomplished making typically incoherent and dissipative phonons behave in a coherent and non-dissipative manner. We find the transparency to be widely tunable by electronic and optical means. Thereby we show amplification of weakest coupling channels. We further outline the molecular polaron's potential as a control element in phononic circuitry architecture.
现代技术建立在如何利用和控制电子的深入理解之上。除了电子,自然界还利用声子(弹性结构的量子振动)来传递能量、动量甚至信息。声子渗透在现代技术的晶体成分中,但就技术利用而言,声子远不如电子。在这里,我们展示了如何利用声子使单个量子点对光学透明。这种声子诱导的透明是通过形成分子极化子来实现的,这是一种 Fano 型量子干涉的结果,证明了我们已经成功地使通常非相干和耗散的声子表现出相干和非耗散的行为。我们发现,通过电子和光学手段可以广泛调节透明度。因此,我们展示了对最微弱耦合通道的放大。我们进一步概述了分子极化子作为声子电路架构中控制元件的潜力。