Suppr超能文献

SITS-sensitive basolateral anion current in rabbit proximal convoluted tubules.

作者信息

Kuwahara M, Rector F C, Berry C A

机构信息

Department of Physiology, University of California, San Francisco 94143-0532.

出版信息

Am J Physiol. 1988 Jun;254(6 Pt 2):F828-36. doi: 10.1152/ajprenal.1988.254.6.F828.

Abstract

To assess the presence and nature of steady-state anion current across the basolateral membrane in in vitro rabbit proximal convoluted tubules bathed and perfused with a high-chloride, low-bicarbonate solution simulating late proximal tubular fluid, steady-state basolateral cell membrane potential difference (Vb1) was measured by conventional microelectrodes. The mean value of Vb1 was -52 mV. Addition of 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath solution hyperpolarized Vb1 by 30 mV, suggesting the presence of basolateral anion current. Total chloride removal did not change Vb1 significantly, and formate, a presumptive stimulant of electroneutral sodium chloride transport, depolarized Vb1 both in the presence and absence of chloride, suggesting that the formate-stimulated change in Vb1 was chloride independent. In the total absence of chloride and bicarbonate, 1 mM bath SITS and 0.1 mM lumen and bath acetazolamide hyperpolarized Vb1 by 27-35 and 23 mV, respectively. These results suggest that the SITS-sensitive change in Vb1 is independent of chloride and associated with a basolateral anion current that is predominantly due to bicarbonate exit. In the absence of exogenous CO2, cell-to-bath HCO3-dependent anion current can be derived from metabolic CO2.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验