Wasserstrom J A, Salata J J
Department of Medicine, University of Chicago Pritzker School of Medicine, Illinois 60637.
Am J Physiol. 1988 Jun;254(6 Pt 2):H1157-66. doi: 10.1152/ajpheart.1988.254.6.H1157.
We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).
我们研究了河豚毒素(TTX)和利多卡因对犬离体心室肌细胞跨膜动作电位和离子电流的影响。TTX(0.1 - 1×10⁻⁵ M)和利多卡因(0.5 - 2×10⁻⁵ M)可缩短动作电位时程,但只有TTX能降低最大去极化速率(Vmax)。TTX(1 - 2×10⁻⁵ M)和利多卡因(2 - 5×10⁻⁵ M)均可在平台期电压范围内阻断一种缓慢失活的内向电流。该电流的电压和时间依赖性特征与浦肯野纤维中描述的缓慢失活内向Na⁺电流几乎相同。此外,TTX消除了仅由利多卡因引起的平台期电位时净电流的外向偏移。利多卡因对缓慢内向Ca²⁺电流和内向K⁺电流整流器Ia没有可检测到的影响。我们的结果表明:1)心室细胞中存在一种缓慢失活的内向Na⁺电流,其在时间、电压和TTX敏感性方面与浦肯野纤维中描述的相似;2)TTX和利多卡因均通过减少这种缓慢失活的Na⁺电流来缩短心室动作电位时程;3)利多卡因对其他有助于缩短心室动作电位时程的离子电流没有额外作用;4)尽管两种药物通过相同机制缩短动作电位,但只有TTX降低Vmax。最后这一点表明TTX产生Na⁺电流的强直阻断,而利多卡因可能产生状态依赖性Na⁺通道阻断,即仅在Na⁺通道已经开放后(失活状态阻断)阻断Na⁺电流。