Suppr超能文献

为了在飞行中保持航向,果蝇会忽略向上的视野。

To keep on track during flight, fruitflies discount the skyward view.

机构信息

Department of Biological Sciences, Florida International University, , Miami, FL 33199, USA.

出版信息

Biol Lett. 2014 Feb 19;10(2):20131103. doi: 10.1098/rsbl.2013.1103. Print 2014 Feb.

Abstract

When small flying insects go off their intended course, they use the resulting pattern of motion on their eye, or optic flow, to guide corrective steering. A change in heading generates a unique, rotational motion pattern and a change in position generates a translational motion pattern, and each produces corrective responses in the wingbeats. Any image in the flow field can signal rotation, but owing to parallax, only the images of nearby objects can signal translation. Insects that fly near the ground might therefore respond more strongly to translational optic flow that occurs beneath them, as the nearby ground will produce strong optic flow. In these experiments, rigidly tethered fruitflies steered in response to computer-generated flow fields. When correcting for unintended rotations, flies weight the motion in their upper and lower visual fields equally. However, when correcting for unintended translations, flies weight the motion in the lower visual fields more strongly. These results are consistent with the interpretation that fruitflies stabilize by attending to visual areas likely to contain the strongest signals during natural flight conditions.

摘要

当小昆虫偏离预定路线时,它们会利用眼睛(或光流)上产生的运动模式来引导纠正转向。航向的变化会产生独特的旋转运动模式,位置的变化会产生平移运动模式,而每种模式都会在翅膀拍打中产生纠正反应。流场中的任何图像都可以发出旋转信号,但由于视差,只有附近物体的图像才能发出平移信号。因此,在地面附近飞行的昆虫可能会对流场中发生的平移光流做出更强烈的反应,因为附近的地面会产生强烈的光流。在这些实验中,刚性系绳的果蝇根据计算机生成的流场进行转向。在纠正非预期旋转时,果蝇在上下视野中的运动权重相等。然而,在纠正非预期平移时,果蝇在下部视野中的运动权重更大。这些结果与以下解释一致,即果蝇通过关注在自然飞行条件下可能包含最强信号的视觉区域来稳定自身。

相似文献

1
To keep on track during flight, fruitflies discount the skyward view.
Biol Lett. 2014 Feb 19;10(2):20131103. doi: 10.1098/rsbl.2013.1103. Print 2014 Feb.
2
Ventral motion parallax enhances fruit fly steering to visual sideslip.
Biol Lett. 2020 May;16(5):20200046. doi: 10.1098/rsbl.2020.0046. Epub 2020 May 20.
3
A visual horizon affects steering responses during flight in fruit flies.
J Exp Biol. 2015 Sep;218(Pt 18):2942-50. doi: 10.1242/jeb.119313. Epub 2015 Jul 31.
4
Visual control of flight speed in Drosophila melanogaster.
J Exp Biol. 2009 Apr;212(Pt 8):1120-30. doi: 10.1242/jeb.020768.
5
Flying fruit flies correct for visual sideslip depending on relative speed of forward optic flow.
Front Behav Neurosci. 2013 Jul 2;7:76. doi: 10.3389/fnbeh.2013.00076. eCollection 2013.
6
Figure-ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior.
J Exp Biol. 2014 Feb 15;217(Pt 4):570-9. doi: 10.1242/jeb.080192. Epub 2013 Nov 6.
7
Visual motion speed determines a behavioral switch from forward flight to expansion avoidance in Drosophila.
J Exp Biol. 2013 Feb 15;216(Pt 4):719-32. doi: 10.1242/jeb.074732. Epub 2012 Nov 29.
8
Visual stabilization dynamics are enhanced by standing flight velocity.
Biol Lett. 2010 Jun 23;6(3):410-3. doi: 10.1098/rsbl.2009.0845. Epub 2009 Dec 2.
9
Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses.
J Exp Biol. 2014 Feb 15;217(Pt 4):558-69. doi: 10.1242/jeb.097220. Epub 2013 Nov 6.
10
Stabilizing responses to sideslip disturbances in are modulated by the density of moving elements on the ground.
Biol Lett. 2021 Mar;17(3):20200748. doi: 10.1098/rsbl.2020.0748. Epub 2021 Mar 3.

引用本文的文献

2
Optic flow in the natural habitats of zebrafish supports spatial biases in visual self-motion estimation.
Curr Biol. 2022 Dec 5;32(23):5008-5021.e8. doi: 10.1016/j.cub.2022.10.009. Epub 2022 Nov 2.
3
Stabilizing responses to sideslip disturbances in are modulated by the density of moving elements on the ground.
Biol Lett. 2021 Mar;17(3):20200748. doi: 10.1098/rsbl.2020.0748. Epub 2021 Mar 3.
4
Ventral motion parallax enhances fruit fly steering to visual sideslip.
Biol Lett. 2020 May;16(5):20200046. doi: 10.1098/rsbl.2020.0046. Epub 2020 May 20.
5
Fruit flies increase attention to their frontal visual field during fast forward optic flow.
Biol Lett. 2019 Jan 31;15(1):20180767. doi: 10.1098/rsbl.2018.0767.

本文引用的文献

1
Flying fruit flies correct for visual sideslip depending on relative speed of forward optic flow.
Front Behav Neurosci. 2013 Jul 2;7:76. doi: 10.3389/fnbeh.2013.00076. eCollection 2013.
2
Episodes in insect evolution.
Integr Comp Biol. 2009 Nov;49(5):590-606. doi: 10.1093/icb/icp043. Epub 2009 Jun 24.
3
Dynamics of optomotor responses in Drosophila to perturbations in optic flow.
J Exp Biol. 2010 Apr;213(Pt 8):1366-75. doi: 10.1242/jeb.037945.
4
Turbulence-driven instabilities limit insect flight performance.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9105-8. doi: 10.1073/pnas.0902186106. Epub 2009 May 20.
5
Invertebrate solutions for sensing gravity.
Curr Biol. 2009 Mar 10;19(5):R186-90. doi: 10.1016/j.cub.2008.12.024.
6
The free-flight response of Drosophila to motion of the visual environment.
J Exp Biol. 2008 Jul;211(Pt 13):2026-45. doi: 10.1242/jeb.008268.
7
The moments of the z and F distributions.
Biometrika. 1949 Dec;36(3-4):394-403.
8
Spatial organization of visuomotor reflexes in Drosophila.
J Exp Biol. 2004 Jan;207(Pt 1):113-22. doi: 10.1242/jeb.00724.
9
Neural encoding of behaviourally relevant visual-motion information in the fly.
Trends Neurosci. 2002 Feb;25(2):96-102. doi: 10.1016/s0166-2236(02)02063-5.
10
Estimation of self-motion by optic flow processing in single visual interneurons.
Nature. 1996 Dec 5;384(6608):463-6. doi: 10.1038/384463a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验