Krapp H G, Hengstenberg R
Max-Planck-Institut für Biologische Kybernetik, Tübingen, Germany.
Nature. 1996 Dec 5;384(6608):463-6. doi: 10.1038/384463a0.
Humans, animals and some mobile robots use visual motion cues for object detection and navigation in structured surroundings. Motion is commonly sensed by large arrays of small field movement detectors, each preferring motion in a particular direction. Self-motion generates distinct 'optic flow fields' in the eyes that depend on the type and direction of the momentary locomotion (rotation, translation). To investigate how the optic flow is processed at the neuronal level, we recorded intracellularly from identified interneurons in the third visual neuropile of the blowfly. The distribution of local motion tuning over their huge receptive fields was mapped in detail. The global structure of the resulting 'motion response fields' is remarkably similar to optic flow fields. Thus, the organization of the receptive fields of the so-called VS neurons strongly suggests that each of these neurons specifically extracts the rotatory component of the optic flow around a particular horizontal axis. Other neurons are probably adapted to extract translatory flow components. This study shows how complex visual discrimination can be achieved by task-oriented preprocessing in single neurons.
人类、动物以及一些移动机器人在结构化环境中利用视觉运动线索进行目标检测和导航。运动通常由大量小视野运动探测器感知,每个探测器偏好特定方向的运动。自身运动在眼睛中产生独特的“光流场”,这取决于瞬时运动(旋转、平移)的类型和方向。为了研究光流在神经元水平上是如何被处理的,我们在果蝇的第三个视觉神经节中对已识别的中间神经元进行了细胞内记录。详细绘制了它们巨大感受野上局部运动调谐的分布。由此产生的“运动反应场”的全局结构与光流场非常相似。因此,所谓的VS神经元感受野的组织强烈表明,这些神经元中的每一个都专门提取围绕特定水平轴的光流的旋转分量。其他神经元可能适合提取平移流分量。这项研究展示了如何通过单个神经元的面向任务的预处理来实现复杂的视觉辨别。