van der Hagen Eline A E, Lavrijsen Marla, van Zeeland Femke, Praetorius Jeppe, Bonny Olivier, Bindels René J M, Hoenderop Joost G J
Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
Pflugers Arch. 2014 Nov;466(11):2077-87. doi: 10.1007/s00424-014-1470-x. Epub 2014 Feb 21.
Fine-tuning of renal calcium ion (Ca(2+)) reabsorption takes place in the distal convoluted and connecting tubules (distal convolution) of the kidney via transcellular Ca(2+) transport, a process controlled by the epithelial Ca(2+) channel Transient Receptor Potential Vanilloid 5 (TRPV5). Studies to delineate the molecular mechanism of transcellular Ca(2+) transport are seriously hampered by the lack of a suitable cell model. The present study describes the establishment and validation of a primary murine cell model of the distal convolution. Viable kidney tubules were isolated from mice expressing enhanced Green Fluorescent Protein (eGFP) under the control of a TRPV5 promoter (pTRPV5-eGFP), using Complex Object Parametric Analyser and Sorting (COPAS) technology. Tubules were grown into tight monolayers on semi-permeable supports. Radioactive (45)Ca(2+) assays showed apical-to-basolateral transport rates of 13.5 ± 1.2 nmol/h/cm(2), which were enhanced by the calciotropic hormones parathyroid hormone and 1,25-dihydroxy vitamin D3. Cell cultures lacking TRPV5, generated by crossbreeding pTRPV5-eGFP with TRPV5 knockout mice (TRPV5(-/-)), showed significantly reduced transepithelial Ca(2+) transport (26 % of control), for the first time directly confirming the key role of TRPV5. Most importantly, using this cell model, a novel molecular player in transepithelial Ca(2+) transport was identified: mRNA analysis revealed that ATP-dependent Ca(2+)-ATPase 4 (PMCA4) instead of PMCA1 was enriched in isolated tubules and downregulated in TRPV5(-/-) material. Immunohistochemical stainings confirmed co-localization of PMCA4 with TRPV5 in the distal convolution. In conclusion, a novel primary cell model with TRPV5-dependent Ca(2+) transport characteristics was successfully established, enabling comprehensive studies of transcellular Ca(2+) transport.
肾脏钙离子(Ca(2+))重吸收的精细调节通过跨细胞Ca(2+)转运在肾脏的远曲小管和连接小管(远曲小管)中进行,这一过程由上皮Ca(2+)通道瞬时受体电位香草酸亚型5(TRPV5)控制。由于缺乏合适的细胞模型,描绘跨细胞Ca(2+)转运分子机制的研究受到严重阻碍。本研究描述了远曲小管原代小鼠细胞模型的建立和验证。使用复杂物体参数分析仪和分选技术(COPAS),从在TRPV5启动子(pTRPV5-eGFP)控制下表达增强型绿色荧光蛋白(eGFP)的小鼠中分离出有活力的肾小管。肾小管在半透性支持物上生长成紧密的单层。放射性(45)Ca(2+)测定显示,顶端到基底外侧的转运速率为13.5±1.2 nmol/h/cm(2),钙调节激素甲状旁腺激素和1,25-二羟基维生素D3可增强该速率。通过将pTRPV5-eGFP与TRPV5基因敲除小鼠(TRPV5(-/-))杂交产生的缺乏TRPV5的细胞培养物显示,跨上皮Ca(2+)转运显著降低(为对照的26%),首次直接证实了TRPV5的关键作用。最重要的是,使用该细胞模型,鉴定出跨上皮Ca(2+)转运中的一个新分子参与者:mRNA分析显示,依赖ATP的Ca(2+)-ATP酶4(PMCA4)而非PMCA1在分离的肾小管中富集,而在TRPV5(-/-)材料中下调。免疫组织化学染色证实PMCA4与TRPV5在远曲小管中共定位。总之,成功建立了一种具有TRPV5依赖性Ca(2+)转运特性的新型原代细胞模型,能够对跨细胞Ca(2+)转运进行全面研究。