Suppr超能文献

基于小波重构方法的钢坯角部裂纹缺陷检测

Defect detection for corner cracks in steel billets using a wavelet reconstruction method.

作者信息

Jeon Yong-Ju, Choi Doo-chul, Lee Sang Jun, Yun Jong Pil, Kim Sang Woo

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2014 Feb 1;31(2):227-37. doi: 10.1364/JOSAA.31.000227.

Abstract

Presently, automatic inspection algorithms are widely used to ensure high-quality products and achieve high productivity in the steelmaking industry. In this paper, we propose a vision-based method for detecting corner cracks on the surface of steel billets. Because of the presence of scales composed of oxidized substances, the billet surfaces are not uniform and vary considerably with the lighting conditions. To minimize the influence of scales and improve the accuracy of detection, a detection method based on a visual inspection algorithm is proposed. Wavelet reconstruction is used to reduce the effect of scales. Texture and morphological features are used to identify the corner cracks among the defective candidates. Finally, the experimental results show that the proposed algorithm is effective in detecting corner cracks on the surfaces of the steel billets.

摘要

目前,自动检测算法在钢铁行业中被广泛用于确保产品质量和提高生产效率。在本文中,我们提出了一种基于视觉的方法来检测钢坯表面的角部裂纹。由于存在由氧化物质组成的氧化皮,钢坯表面不均匀,并且会随着光照条件的变化而有很大差异。为了最小化氧化皮的影响并提高检测精度,提出了一种基于视觉检测算法的检测方法。利用小波重构来降低氧化皮的影响。利用纹理和形态特征在候选缺陷中识别角部裂纹。最后,实验结果表明,所提出的算法在检测钢坯表面角部裂纹方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验