Yun Jong Pil, Jeon Yong-Ju, Choi Doo-chul, Kim Sang Woo
System Research Group, Engineering Research Center, Pohang Iron and Steel Company (POSCO), Pohang 790-300, South Korea.
J Opt Soc Am A Opt Image Sci Vis. 2012 May 1;29(5):797-807. doi: 10.1364/JOSAA.29.000797.
We propose a new defect detection algorithm for scale-covered steel wire rods. The algorithm incorporates an adaptive wavelet filter that is designed on the basis of lattice parameterization of orthogonal wavelet bases. This approach offers the opportunity to design orthogonal wavelet filters via optimization methods. To improve the performance and the flexibility of wavelet design, we propose the use of the undecimated discrete wavelet transform, and separate design of column and row wavelet filters but with a common cost function. The coefficients of the wavelet filters are optimized by the so-called univariate dynamic encoding algorithm for searches (uDEAS), which searches the minimum value of a cost function designed to maximize the energy difference between defects and background noise. Moreover, for improved detection accuracy, we propose an enhanced double-threshold method. Experimental results for steel wire rod surface images obtained from actual steel production lines show that the proposed algorithm is effective.
我们提出了一种用于带氧化皮的钢丝杆的新型缺陷检测算法。该算法结合了一种自适应小波滤波器,它是基于正交小波基的晶格参数化设计的。这种方法提供了通过优化方法设计正交小波滤波器的机会。为了提高小波设计的性能和灵活性,我们建议使用非下采样离散小波变换,并分别设计列和行小波滤波器,但使用共同的代价函数。小波滤波器的系数通过所谓的单变量动态编码搜索算法(uDEAS)进行优化,该算法搜索一个代价函数的最小值,该代价函数旨在最大化缺陷与背景噪声之间的能量差。此外,为了提高检测精度,我们提出了一种增强型双阈值方法。从实际钢铁生产线获得的钢丝杆表面图像的实验结果表明,所提出的算法是有效的。