Li Bingtuan, Fagan William F, Meyer Kimberly I
Department of Mathematics, University of Louisville, Louisville, KY, 40059, USA,
J Math Biol. 2015 Jan;70(1-2):265-87. doi: 10.1007/s00285-014-0766-y. Epub 2014 Feb 23.
We study a model that describes the spatial spread of a species along a habitat gradient on which the species' growth increases. Mathematical analysis is provided to determine the spreading dynamics of the model. We demonstrate that the species may succeed or fail in local invasion depending on the species' growth function and dispersal kernel. We delineate the conditions under which a spreading species may be stopped by poor quality habitat, and demonstrate how a species can escape a region of poor quality habitat by climbing a resource gradient to good quality habitat where it spreads at a constant spreading speed. We show that dispersal may take the species from a good quality region to a poor quality region where the species becomes extinct. We also provide formulas for spreading speeds for the model that are determined by the dispersal kernel and linearized growth rates in both directions.
我们研究了一个描述物种沿栖息地梯度空间扩散的模型,在该梯度上物种的生长会增加。提供了数学分析以确定该模型的扩散动态。我们证明,根据物种的生长函数和扩散核,该物种在局部入侵中可能成功也可能失败。我们描绘了扩散物种可能因栖息地质量差而停止扩散的条件,并展示了物种如何通过沿着资源梯度攀升到高质量栖息地来逃离低质量栖息地区域,在高质量栖息地中它以恒定的扩散速度扩散。我们表明,扩散可能会使物种从高质量区域进入低质量区域,在该区域物种会灭绝。我们还给出了由扩散核和两个方向上的线性化生长率所确定的该模型扩散速度的公式。