Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany.
Plant Cell. 2014 Feb;26(2):765-76. doi: 10.1105/tpc.114.123240. Epub 2014 Feb 21.
Consistent with their origin from cyanobacteria, plastids (chloroplasts) perform protein biosynthesis on bacterial-type 70S ribosomes. The plastid genomes of seed plants contain a conserved set of ribosomal protein genes. Three of these have proven to be nonessential for translation and, thus, for cellular viability: rps15, rpl33, and rpl36. To help define the minimum ribosome, here, we examined whether more than one of these nonessential plastid ribosomal proteins can be removed from the 70S ribosome. To that end, we constructed all possible double knockouts for the S15, L33, and L36 ribosomal proteins by stable transformation of the tobacco (Nicotiana tabacum) plastid genome. We find that, although S15 and L33 function in different ribosomal particles (30S and 50S, respectively), their combined deletion from the plastid genome results in synthetic lethality under autotrophic conditions. Interestingly, the lethality can be overcome by growth under elevated temperatures due to an improved efficiency of plastid ribosome biogenesis. Our results reveal functional interactions between protein and RNA components of the 70S ribosome and uncover the interdependence of the biogenesis of the two ribosomal subunits. In addition, our findings suggest that defining a minimal set of plastid genes may prove more complex than generally believed.
与它们起源于蓝细菌一致,质体(叶绿体)在细菌型 70S 核糖体上进行蛋白质生物合成。种子植物的质体基因组包含一套保守的核糖体蛋白基因。其中有三个已被证明对翻译(因此对细胞活力)非必需:rps15、rpl33 和 rpl36。为了帮助定义最小核糖体,在这里,我们研究了是否可以从 70S 核糖体中去除这些非必需的质体核糖体蛋白中的一个以上。为此,我们通过稳定转化烟草(Nicotiana tabacum)质体基因组,构建了所有可能的 S15、L33 和 L36 核糖体蛋白的双敲除。我们发现,尽管 S15 和 L33 在不同的核糖体颗粒(分别为 30S 和 50S)中起作用,但它们从质体基因组中的联合缺失导致在自养条件下产生合成致死性。有趣的是,由于质体核糖体生物发生效率的提高,在高温下生长可以克服这种致死性。我们的结果揭示了 70S 核糖体的蛋白质和 RNA 成分之间的功能相互作用,并揭示了两个核糖体亚基生物发生的相互依赖性。此外,我们的研究结果表明,定义最小质体基因集可能比普遍认为的更复杂。