Suppr超能文献

对于非零简单加法,不存在通用的实践方法。

No generalization of practice for nonzero simple addition.

作者信息

Campbell Jamie I D, Beech Leah C

机构信息

Department of Psychology, University of Saskatchewan.

出版信息

J Exp Psychol Learn Mem Cogn. 2014 Nov;40(6):1766-71. doi: 10.1037/xlm0000003. Epub 2014 Feb 24.

Abstract

Several types of converging evidence have suggested recently that skilled adults solve very simple addition problems (e.g., 2 + 1, 4 + 2) using a fast, unconscious counting algorithm. These results stand in opposition to the long-held assumption in the cognitive arithmetic literature that such simple addition problems normally are solved by fact retrieval from declarative memory. Here we tested a large sample of diversely skilled and culturally diverse men and women at the University of Saskatchewan and examined multiple categories of simple (1 digit plus 1 digit) addition problems for evidence of generalization of practice, a signature of procedure use. The procedure-based 0 + N = N problems presented clear evidence of generalization (i.e., practicing a subset of 0 + N problems lead to speed-up for a different subset of 0 + N problems), but there was no evidence of such generalization of practice for the nonzero problems, although the experiment had good power to detect small effects. Given that generalization of practice is a basic marker of procedure-based processing, its absence for the nonzero addition problems casts doubt on the compacted counting theory.

摘要

最近,几种相互印证的证据表明,熟练的成年人使用一种快速、无意识的计数算法来解决非常简单的加法问题(例如,2 + 1、4 + 2)。这些结果与认知算术文献中长期以来的假设相悖,该假设认为此类简单加法问题通常通过从陈述性记忆中检索事实来解决。在此,我们对萨斯喀彻温大学的大量技能各异、文化背景多样的男性和女性进行了测试,并检查了多类简单的(一位数加一位数)加法问题,以寻找练习泛化的证据,这是程序使用的一个标志。基于程序的0 + N = N问题呈现出明显的练习泛化证据(即,练习一部分0 + N问题会导致另一部分不同的0 + N问题的解题速度加快),但对于非零问题,没有此类练习泛化的证据,尽管该实验有很强的能力检测到小的效应。鉴于练习泛化是基于程序处理的一个基本标志,非零加法问题缺乏这一标志对压缩计数理论提出了质疑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验