Suppr超能文献

模拟分散体系中凝块形成的机制。

Modeling the mechanism of coagulum formation in dispersions.

作者信息

Kroupa Martin, Vonka Michal, Kosek Juraj

机构信息

Department of Chemical Engineering, Institute of Chemical Technology Prague , Technicka 5, 16628 Prague 6, Czech Republic.

出版信息

Langmuir. 2014 Mar 18;30(10):2693-702. doi: 10.1021/la500101x. Epub 2014 Mar 7.

Abstract

The stability of colloidal dispersions is of crucial importance because the properties of dispersions are strongly affected by the degree of coagulation. Whereas the coagulation kinetics for quiescent (i.e., nonstirred) and diluted systems is well-established, the behavior of concentrated dispersions subjected to shear is still not fully understood. We employ the discrete element method (DEM) for the simulation of coagulation of concentrated colloidal dispersions. Normal forces between interacting particles are described by a combination of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) and Johnson, Kendall, and Roberts (JKR) theories. We show that, in accordance with the expectations, the coagulation behavior depends strongly on the particle volume fraction, the surface potential, and the shear rate. Moreover, we demonstrate that the doublet formation rate is insufficient for the description of the coagulation kinetics and that the detailed DEM model is able to explain the autocatalytic nature of the coagulation of stabilized dispersions subjected to shear. With no adjustable parameters we are able to provide semiquantitative predictions of the coagulation behavior in the high-shear regions for a broad range of particle volume fractions. The results obtained using the DEM model can provide valuable guidelines for the operation of industrial dispersion processes.

摘要

胶体分散体的稳定性至关重要,因为分散体的性质会受到凝聚程度的强烈影响。虽然静态(即不搅拌)和稀释体系的凝聚动力学已得到充分确立,但受剪切作用的浓分散体的行为仍未被完全理解。我们采用离散单元法(DEM)来模拟浓胶体分散体的凝聚过程。相互作用颗粒之间的法向力由Derjaguin、Landau、Verwey和Overbeek(DLVO)理论与Johnson、Kendall和Roberts(JKR)理论相结合来描述。我们表明,正如预期的那样,凝聚行为强烈依赖于颗粒体积分数、表面电势和剪切速率。此外,我们证明双峰形成速率不足以描述凝聚动力学,而详细的DEM模型能够解释受剪切作用的稳定分散体凝聚的自催化性质。在没有可调参数的情况下,我们能够对广泛颗粒体积分数范围内高剪切区域的凝聚行为进行半定量预测。使用DEM模型获得的结果可为工业分散过程的操作提供有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/3960939/b75a18821359/la-2014-00101x_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验