PharmacoMetrica, Lieu-dit Longcol, La Fouillade, France.
Curr Opin Pharmacol. 2014 Feb;14:23-9. doi: 10.1016/j.coph.2013.10.004. Epub 2013 Nov 16.
Today the CNS drug development poses serious challenges for developers given the low probability of success and the disproportionately high investment costs. This review demonstrates how predictive models can provide quantitative criteria for increasing the efficiency of drug development in CNS. Predictive models can be applied to characterize, understand, and predict a drug's PK and PD behavior; to quantify uncertainty of information about that behavior; to identify factors that could affect the outcomes of a clinical trial through Clinical Trial Simulation (CTS), to identify prognostic factors that could affect the disease progression, to implement optimal and adaptive clinical trial and finally to control the level of placebo response by implementing study designs that minimizes the impact of placebo on study outcomes.
目前,中枢神经系统(CNS)药物开发面临着严峻的挑战,因为成功率低,投资成本不成比例。本综述展示了预测模型如何为提高 CNS 药物开发的效率提供定量标准。预测模型可用于描述、理解和预测药物的药代动力学(PK)和药效动力学(PD)行为;量化有关该行为信息的不确定性;通过临床试验模拟(CTS)确定可能影响临床试验结果的因素;识别可能影响疾病进展的预后因素;实施最佳和适应性临床试验;最后,通过实施研究设计来控制安慰剂反应的水平,最大程度地减少安慰剂对研究结果的影响。