MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA.
Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA.
Water Res. 2014 May 1;54:115-22. doi: 10.1016/j.watres.2014.01.047. Epub 2014 Feb 7.
We studied the performance of a pilot-scale membrane biofilm reactor (MBfR) treating groundwater containing four electron acceptors: nitrate (NO3(-)), perchlorate (ClO4(-)), sulfate (SO4(2-)), and oxygen (O2). The treatment goal was to remove ClO4(-) from ∼200 μg/L to less than 6 μg/L. The pilot system was operated as two MBfRs in series, and the positions of the lead and lag MBfRs were switched regularly. The lead MBfR removed at least 99% of the O2 and 63-88% of NO3(-), depending on loading conditions. The lag MBfR was where most of the ClO4(-) reduction occurred, and the effluent ClO4(-) concentration was driven to as low as 4 μg/L, with most concentrations ≤10 μg/L. However, SO4(2-) reduction occurred in the lag MBfR when its NO3(-) + O2 flux was smaller than ∼0.18 g H2/m(2)-d, and this was accompanied by a lower ClO4(-) flux. We were able to suppress SO4(2-) reduction by lowering the H2 pressure and increasing the NO3(-) + O2 flux. We also monitored the microbial community using the quantitative polymerase chain reaction targeting characteristic reductase genes. Due to regular position switching, the lead and lag MBfRs had similar microbial communities. Denitrifying bacteria dominated the biofilm when the NO3(-) + O2 fluxes were highest, but sulfate-reducing bacteria became more important when SO4(2-) reduction was enhanced in the lag MBfR due to low NO3(-) + O2 flux. The practical two-stage strategy to achieve complete ClO4(-) and NO3(-) reduction while suppressing SO4(2-) reduction involved controlling the NO3(-) + O2 surface loading between 0.18 and 0.34 g H2/m(2)-d and using a low H2 pressure in the lag MBfR.
我们研究了一个中试规模的膜生物膜反应器(MBfR)处理含有四种电子受体的地下水的性能:硝酸盐(NO3(-))、高氯酸盐(ClO4(-))、硫酸盐(SO4(2-))和氧气(O2)。处理目标是将约 200μg/L 的 ClO4(-)去除至低于 6μg/L。该中试系统以两个 MBfR 串联运行,并且定期切换主导和滞后 MBfR 的位置。主导 MBfR 去除了至少 99%的 O2 和 63-88%的 NO3(-),具体取决于负荷条件。滞后 MBfR 是发生大部分 ClO4(-)还原的地方,出水 ClO4(-)浓度低至 4μg/L,大多数浓度≤10μg/L。然而,当滞后 MBfR 的 NO3(-) + O2 通量小于约 0.18g H2/m(2)-d 时,SO4(2-)还原会在滞后 MBfR 中发生,同时 ClO4(-)通量降低。我们能够通过降低 H2 压力和增加 NO3(-) + O2 通量来抑制 SO4(2-)还原。我们还使用针对特征性还原酶基因的定量聚合酶链反应监测微生物群落。由于定期切换位置,主导和滞后 MBfR 具有相似的微生物群落。当 NO3(-) + O2 通量最高时,反硝化细菌主导生物膜,但当滞后 MBfR 中由于低 NO3(-) + O2 通量而增强 SO4(2-)还原时,硫酸盐还原菌变得更加重要。实现完全去除 ClO4(-)和 NO3(-),同时抑制 SO4(2-)还原的实际两阶段策略包括控制 NO3(-) + O2 表面负荷在 0.18 和 0.34g H2/m(2)-d 之间,并在滞后 MBfR 中使用低 H2 压力。