UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Sep 1;966:140-6. doi: 10.1016/j.jchromb.2014.01.032. Epub 2014 Jan 30.
Reliable dietary assessments are essential when attempting to understand the complex links between diet and health. Traditional methods for collecting dietary exposure can be unreliable, therefore there is an increasing interest in identifying biomarkers to provide a more accurate measurement. Metabolomics is a technology that offers great promise in this area. The aim of this study was to use a multivariate statistical strategy to link lipidomic patterns with dietary data in an attempt to identify dietary biomarkers. We assessed the relationship between lipidomic profiles and dietary data in volunteers (n=34) from the Metabolic Challenge Study (MECHE). Principal component analysis (PCA), linear regression and receiver operating characteristic (ROC) analysis were used to (1) reduce the lipidomic data into lipid patterns (LPs), (2) investigate relationships between these patterns and dietary data and (3) identify biomarkers of dietary intake. Our study identified a total of 6 novel LPs. LP1 was highly predictive of dietary fat intake (area under the curve AUC=0.82). A random forest (RF) classification model used to discriminate between low and high consumers resulted with an error rate of >10%, with a panel of six metabolites identified as the most predictive. LP4 was highly predictive of alcohol intake (AUC=0.81) with lysophosphatidylcholine alkyl C18:0 (LPCeC18:0) identified as a potential biomarker of alcohol consumption. LP6 had a reasonably good ability to predict dietary fish intake (AUC=0.76), with lysophosphatidylethanolamine acyl C18:2 (LPEaC18:2) phoshatidylethanolamine diaclyl C38:4 (PEaaC38:4) identified as potential biomarkers. The identification of these LPs and specific biomarkers will help in better classifying a persons dietary intake and in turn will improve the assessment of the relationship between diet and disease. Linking these LPs and specific biomarkers with health parameters will be an important future step.
当试图了解饮食与健康之间复杂的联系时,可靠的饮食评估是必不可少的。传统的饮食暴露收集方法可能不可靠,因此人们越来越感兴趣于识别生物标志物以提供更准确的测量。代谢组学在这方面具有很大的潜力。本研究的目的是使用多变量统计策略将脂质组学模式与饮食数据联系起来,试图识别饮食生物标志物。我们评估了代谢挑战研究(MECHE)中志愿者(n=34)的脂质组学特征与饮食数据之间的关系。主成分分析(PCA)、线性回归和接收者操作特征(ROC)分析用于:(1)将脂质组学数据简化为脂质模式(LP);(2)研究这些模式与饮食数据之间的关系;(3)识别饮食摄入的生物标志物。我们的研究共确定了 6 个新的 LP。LP1 高度预测脂肪摄入量(曲线下面积 AUC=0.82)。用于区分低和高消费者的随机森林(RF)分类模型的错误率>10%,确定了 6 种代谢物作为最具预测性的标志物。LP4 高度预测酒精摄入量(AUC=0.81),溶血磷脂酰胆碱烷基 C18:0(LPCeC18:0)被确定为酒精消耗的潜在生物标志物。LP6 有相当好的能力预测饮食中鱼类的摄入量(AUC=0.76),溶血磷脂酰乙醇胺酰基 C18:2(LPEaC18:2)磷脂酰乙醇胺二酰基 C38:4(PEaaC38:4)被确定为潜在的生物标志物。这些 LP 和特定生物标志物的鉴定将有助于更好地分类一个人的饮食摄入,从而改善饮食与疾病之间关系的评估。将这些 LP 和特定生物标志物与健康参数联系起来将是一个重要的未来步骤。