Kuhn Tobias, Nagy Mate Levente, Luong Thaibinh, Krauthammer Michael
Department of Humanities, Social and Political Sciences, ETH Zurich, Zürich, Switzerland.
J Biomed Semantics. 2014 Feb 25;5(1):10. doi: 10.1186/2041-1480-5-10.
Authors of biomedical publications use gel images to report experimental results such as protein-protein interactions or protein expressions under different conditions. Gel images offer a concise way to communicate such findings, not all of which need to be explicitly discussed in the article text. This fact together with the abundance of gel images and their shared common patterns makes them prime candidates for automated image mining and parsing. We introduce an approach for the detection of gel images, and present a workflow to analyze them. We are able to detect gel segments and panels at high accuracy, and present preliminary results for the identification of gene names in these images. While we cannot provide a complete solution at this point, we present evidence that this kind of image mining is feasible.
生物医学出版物的作者使用凝胶图像来报告实验结果,比如不同条件下的蛋白质-蛋白质相互作用或蛋白质表达情况。凝胶图像提供了一种简洁的方式来传达此类发现,其中并非所有发现都需要在文章正文中明确讨论。这一事实,再加上凝胶图像数量众多及其具有共同的模式,使得它们成为自动图像挖掘和解析的主要候选对象。我们介绍一种检测凝胶图像的方法,并展示一个分析它们的工作流程。我们能够高精度地检测凝胶片段和板块,并展示在这些图像中识别基因名称的初步结果。虽然目前我们无法提供一个完整的解决方案,但我们提供证据表明这种图像挖掘是可行的。