Suppr超能文献

受限铁氟化物@CMK-3 纳米复合材料作为锂离子电池的超高倍率性能正极。

Confined iron fluoride@CMK-3 nanocomposite as an ultrahigh rate capability cathode for Li-ion batteries.

机构信息

Department of Chemistry, Harbin Institute of Technology, Harbin, 150001, P. R. China.

出版信息

Small. 2014 May 28;10(10):2039-46. doi: 10.1002/smll.201303375. Epub 2014 Feb 27.

Abstract

A facile and advanced architecture design of FeF3·0.33H2O impregnated CMK-3 nanocomposite (FeF3·0.33H2O@CMK-3) is presented. In the FeF3·0.33H2O@CMK-3 nanocomposite, mesoporous carbon CMK-3 can provide enough passageways for electron and Li(+) transport to the confined nanosized FeF3·0.33H2O. The intimate conductive contact between the FeF3·0.33H2O nanoparticles and the carbon framework not only provides an expressway of electron transfer for Li(+) insertion/extraction but also suppresses the growth and agglomeration of FeF3·0.33H2O during the crystallization process. As expected, the nanostructured materials exhibit impressive rate capability and excellent cyclicity. Remarkably, even under an ultrahigh charge/discharge rate of 50 C (the charge or discharge process takes a mere 72 s), the confined FeF3·0.33H2O@CMK-3 still shows a high specific capacity of 78 mAh g(-1). By combining confined nanosized active material, high electron conductivity, and open framework, the FeF3·0.33H2O@CMK-3 nanocomposite demonstrates excellent high-rate capability and good cycling properties.

摘要

提出了一种简便且先进的 FeF3·0.33H2O 浸渍 CMK-3 纳米复合材料(FeF3·0.33H2O@CMK-3)的结构设计。在 FeF3·0.33H2O@CMK-3 纳米复合材料中,介孔碳 CMK-3 可为受限纳米尺寸的 FeF3·0.33H2O 提供足够的电子和 Li(+)传输通道。FeF3·0.33H2O 纳米颗粒与碳骨架之间的紧密导电接触不仅为 Li(+)插入/提取提供了电子转移的高速公路,而且还抑制了 FeF3·0.33H2O 在结晶过程中的生长和团聚。不出所料,纳米结构材料表现出令人印象深刻的倍率性能和优异的循环稳定性。值得注意的是,即使在 50 C 的超高充放电速率(充电或放电过程仅需 72 s)下,受限的 FeF3·0.33H2O@CMK-3 仍显示出 78 mAh g(-1)的高比容量。通过结合受限的纳米活性材料、高电子电导率和开放的骨架,FeF3·0.33H2O@CMK-3 纳米复合材料表现出优异的高倍率性能和良好的循环性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验