Prieto Claudia, Doneva Mariya, Usman Muhammad, Henningsson Markus, Greil Gerald, Schaeffter Tobias, Botnar Rene M
King's College London, Division of Imaging Sciences and Biomedical Engineering, London, UK; Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile.
J Magn Reson Imaging. 2015 Mar;41(3):738-46. doi: 10.1002/jmri.24602. Epub 2014 Feb 27.
To develop an efficient 3D affine respiratory motion compensation framework for Cartesian whole-heart coronary magnetic resonance angiography (MRA).
The proposed method achieves 100% scan efficiency by estimating the affine respiratory motion from the data itself and correcting the acquired data in the reconstruction process. For this, a golden-step Cartesian sampling with spiral profile ordering was performed to enable reconstruction of respiratory resolved images at any breathing position and with different respiratory window size. Affine motion parameters were estimated from image-based registration of 3D undersampled respiratory resolved images reconstructed with iterative SENSE and motion correction was performed directly in the reconstruction using a multiple-coils generalized matrix formulation method. This approach was tested on healthy volunteers and compared against a conventional diaphragmatic navigator-gated acquisition using quantitative and qualitative image quality assessment.
The proposed approach achieved 47 ± 12% and 59 ± 6% vessel sharpness for the right (RCA) and left (LAD) coronary arteries, respectively. Also, good quality visual scores of 2.4 ± 0.74 and 2.44 ± 0.86 were observed for the RCA and LAD (scores from 0, no to 4, excellent coronary vessel delineation). A not statically significant difference (P = 0.05) was found between the proposed method and an 8-mm navigator-gated and tracked scan, although scan efficiency increased from 61 ± 10% to 100%.
We demonstrate the feasibility of a new 3D affine respiratory motion correction technique for Cartesian whole-heart CMRA that achieves 100% scan efficiency and therefore a predictable acquisition time. This approach yields image quality comparable to that of an 8-mm navigator-gated acquisition with lower scan efficiency. Further evaluation of this technique in patients is now warranted to determine its clinical use.
为笛卡尔全心脏冠状动脉磁共振血管造影(MRA)开发一种高效的三维仿射呼吸运动补偿框架。
所提出的方法通过从数据本身估计仿射呼吸运动并在重建过程中校正采集的数据,实现了100%的扫描效率。为此,进行了具有螺旋轮廓排序的黄金步笛卡尔采样,以能够在任何呼吸位置和不同呼吸窗口大小下重建呼吸分辨图像。仿射运动参数通过对使用迭代灵敏度编码(SENSE)重建的三维欠采样呼吸分辨图像进行基于图像的配准来估计,并使用多线圈广义矩阵公式法在重建过程中直接进行运动校正。该方法在健康志愿者身上进行了测试,并与使用定量和定性图像质量评估的传统膈肌导航门控采集进行了比较。
所提出的方法分别使右冠状动脉(RCA)和左冠状动脉(LAD)的血管清晰度达到47±12%和59±6%。此外,RCA和LAD的视觉质量评分良好,分别为2.4±0.74和2.44±0.86(评分范围从0,无到4,冠状动脉血管描绘极佳)。尽管扫描效率从61±10%提高到了100%,但在所提出的方法与8毫米导航门控和跟踪扫描之间未发现统计学上的显著差异(P = 0.05)。
我们证明了一种用于笛卡尔全心脏CMRA的新型三维仿射呼吸运动校正技术的可行性,该技术实现了100%的扫描效率,因此采集时间可预测。这种方法产生的图像质量与扫描效率较低的8毫米导航门控采集相当。现在有必要在患者中对该技术进行进一步评估,以确定其临床应用价值。