Suppr超能文献

缺陷干扰流感病毒 RNA:重新评估其作为广谱抗病毒药物的临床潜力的时机?

Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals?

机构信息

School of Life Sciences, University of Warwick, Coventry, United Kingdom.

出版信息

J Virol. 2014 May;88(10):5217-27. doi: 10.1128/JVI.03193-13. Epub 2014 Feb 26.

Abstract

Defective interfering (DI) RNAs are highly deleted forms of the infectious genome that are made by most families of RNA viruses. DI RNAs retain replication and packaging signals, are synthesized preferentially over infectious genomes, and are packaged as DI virus particles which can be transmitted to susceptible cells. Their ability to interfere with the replication of infectious virus in cell culture and their potential as antivirals in the clinic have long been known. However, until now, no realistic formulation has been described. In this review, we consider the early evidence of antiviral activity by DI viruses and, using the example of DI influenza A virus, outline developments that have led to the production of a cloned DI RNA that is highly active in preclinical studies not only against different subtypes of influenza A virus but also against heterologous respiratory viruses. These data suggest the timeliness of reassessing the potential of DI viruses as a novel class of antivirals that may have general applicability.

摘要

缺陷干扰(DI)RNA 是具有高度缺失的传染性基因组,由大多数 RNA 病毒家族产生。DI RNA 保留复制和包装信号,优先于传染性基因组合成,并被包装为 DI 病毒颗粒,可传播到易感细胞。它们在细胞培养中干扰传染性病毒复制的能力及其在临床上作为抗病毒药物的潜力早已为人所知。然而,直到现在,还没有描述出切实可行的配方。在这篇综述中,我们考虑了 DI 病毒的早期抗病毒活性证据,并以 DI 甲型流感病毒为例,概述了导致产生克隆 DI RNA 的发展情况,该 RNA 在临床前研究中具有高度活性,不仅对不同亚型的流感 A 病毒有效,而且对异源呼吸道病毒也有效。这些数据表明,重新评估 DI 病毒作为一种新型抗病毒药物的潜力具有及时性,这种药物可能具有普遍适用性。

相似文献

1
Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals?
J Virol. 2014 May;88(10):5217-27. doi: 10.1128/JVI.03193-13. Epub 2014 Feb 26.
2
Generation of a purely clonal defective interfering influenza virus.
Microbiol Immunol. 2019 May;63(5):164-171. doi: 10.1111/1348-0421.12681. Epub 2019 May 17.
5
Defective interfering viruses and their potential as antiviral agents.
Rev Med Virol. 2010 Jan;20(1):51-62. doi: 10.1002/rmv.641.
9
Influenza virus protecting RNA: an effective prophylactic and therapeutic antiviral.
J Virol. 2008 Sep;82(17):8570-8. doi: 10.1128/JVI.00743-08. Epub 2008 Jun 25.

引用本文的文献

1
Identification, functional analysis, and clinical applications of defective viral genomes.
Front Microbiol. 2025 Jul 17;16:1642520. doi: 10.3389/fmicb.2025.1642520. eCollection 2025.
2
Deletion viral genome diversity among bovine viral diarrhea virus (BVDV) 1a and 1b strains.
Virol J. 2025 Jul 14;22(1):237. doi: 10.1186/s12985-025-02773-z.
3
Coronavirus Replication: Genomes, Subgenomic RNAs, and Defective Viral Genomes.
Viruses. 2025 May 28;17(6):767. doi: 10.3390/v17060767.
4
Long-term serial passaging of SARS-CoV-2 reveals signatures of convergent evolution.
J Virol. 2025 Jul 22;99(7):e0036325. doi: 10.1128/jvi.00363-25. Epub 2025 Jun 9.
5
Meta-analysis of genomic characteristics for antiviral influenza defective interfering particle prioritization.
NAR Genom Bioinform. 2025 Apr 4;7(2):lqaf031. doi: 10.1093/nargab/lqaf031. eCollection 2025 Jun.
6
Harnessing defective interfering particles and lipid nanoparticles for effective delivery of an anti-dengue virus RNA therapy.
Mol Ther Nucleic Acids. 2024 Dec 12;36(1):102424. doi: 10.1016/j.omtn.2024.102424. eCollection 2025 Mar 11.
7
10
Generation of Defective Interfering Particles of Morbilliviruses Using Reverse Genetics.
Methods Mol Biol. 2024;2808:57-70. doi: 10.1007/978-1-0716-3870-5_5.

本文引用的文献

1
A versatile RNA vector for delivery of coding and noncoding RNAs.
J Virol. 2014 Feb;88(4):2333-6. doi: 10.1128/JVI.03267-13. Epub 2013 Dec 4.
2
Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles.
PLoS One. 2013 Sep 5;8(9):e72288. doi: 10.1371/journal.pone.0072288. eCollection 2013.
3
Sequence analysis of in vivo defective interfering-like RNA of influenza A H1N1 pandemic virus.
J Virol. 2013 Jul;87(14):8064-74. doi: 10.1128/JVI.00240-13. Epub 2013 May 15.
4
Ocular tropism of respiratory viruses.
Microbiol Mol Biol Rev. 2013 Mar;77(1):144-56. doi: 10.1128/MMBR.00058-12.
5
Phylodynamic analysis of the emergence and epidemiological impact of transmissible defective dengue viruses.
PLoS Pathog. 2013 Feb;9(2):e1003193. doi: 10.1371/journal.ppat.1003193. Epub 2013 Feb 28.
6
Deep sequencing analysis of defective genomes of parainfluenza virus 5 and their role in interferon induction.
J Virol. 2013 May;87(9):4798-807. doi: 10.1128/JVI.03383-12. Epub 2013 Feb 28.
8
Comparison of the protection of ferrets against pandemic 2009 influenza A virus (H1N1) by 244 DI influenza virus and oseltamivir.
Antiviral Res. 2012 Dec;96(3):376-85. doi: 10.1016/j.antiviral.2012.09.017. Epub 2012 Oct 4.
9
Antiviral resistance during the 2009 influenza A H1N1 pandemic: public health, laboratory, and clinical perspectives.
Lancet Infect Dis. 2012 Mar;12(3):240-8. doi: 10.1016/S1473-3099(11)70318-8. Epub 2011 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验