Suppr超能文献

具有非线性边界条件的p-拉普拉斯方程的无穷多个弱解。

Infinitely many weak solutions of the p-Laplacian equation with nonlinear boundary conditions.

作者信息

Lu Feng-Yun, Deng Gui-Qian

机构信息

Xingyi Normal University for Nationalities, Xingyi, Guizhou 562400, China ; Human Resources and Social Security Bureau, Buyi and Miao Autonomous Prefecture in Southwest Guizhou, Guizhou 562400, China.

Xingyi Normal University for Nationalities, Xingyi, Guizhou 562400, China.

出版信息

ScientificWorldJournal. 2014 Jan 14;2014:194310. doi: 10.1155/2014/194310. eCollection 2014.

Abstract

We study the following p-Laplacian equation with nonlinear boundary conditions: -Δ(p)u + μ(x)|u|(p-2)u = f(x,u) + g(x,u),x ∈ Ω, | ∇u|(p-2)∂u/∂n = η|u|(p-2)u and x ∈ ∂Ω, where Ω is a bounded domain in ℝ(N) with smooth boundary ∂Ω. We prove that the equation has infinitely many weak solutions by using the variant fountain theorem due to Zou (2001) and f, g do not need to satisfy the (P.S) or (P.S*) condition.

摘要

我们研究如下具有非线性边界条件的(p -)拉普拉斯方程:(-\Delta_p u+\mu(x)|u|^{p - 2}u = f(x,u)+g(x,u)),(x\in\Omega),(|\nabla u|^{p - 2}\frac{\partial u}{\partial n}=\eta|u|^{p - 2}u)且(x\in\partial\Omega),其中(\Omega)是(\mathbb{R}^N)中具有光滑边界(\partial\Omega)的有界区域。我们利用邹(2001)提出的变分喷泉定理证明该方程有无限多个弱解,并且(f)、(g)不需要满足((P.S))或((P.S^*))条件。

相似文献

1
Infinitely many weak solutions of the p-Laplacian equation with nonlinear boundary conditions.
ScientificWorldJournal. 2014 Jan 14;2014:194310. doi: 10.1155/2014/194310. eCollection 2014.
2
Existence of Classical Solutions for Nonlinear Elliptic Equations with Gradient Terms.
Entropy (Basel). 2022 Dec 15;24(12):1829. doi: 10.3390/e24121829.
3
On the evolutionary -Laplacian equation with a partial boundary value condition.
J Inequal Appl. 2018;2018(1):227. doi: 10.1186/s13660-018-1820-x. Epub 2018 Aug 31.
4
Solutions to the nonlinear Schrödinger systems involving the fractional Laplacian.
J Inequal Appl. 2018;2018(1):297. doi: 10.1186/s13660-018-1874-9. Epub 2018 Oct 29.
6
Riemann boundary value problem for triharmonic equation in higher space.
ScientificWorldJournal. 2014;2014:415052. doi: 10.1155/2014/415052. Epub 2014 Jul 8.
7
Complete quenching phenomenon for a parabolic -Laplacian equation with a weighted absorption.
J Inequal Appl. 2018;2018(1):248. doi: 10.1186/s13660-018-1841-5. Epub 2018 Sep 20.
8
Multiple solutions for a singular quasilinear elliptic system.
ScientificWorldJournal. 2013 Oct 24;2013:278013. doi: 10.1155/2013/278013. eCollection 2013.
9
Blow-up and boundedness in quasilinear attraction-repulsion systems with nonlinear signal production.
Math Biosci Eng. 2023 Jan 10;20(3):5243-5267. doi: 10.3934/mbe.2023243.
10
Global boundedness of a higher-dimensional chemotaxis system on alopecia areata.
Math Biosci Eng. 2023 Feb 23;20(5):7922-7942. doi: 10.3934/mbe.2023343.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验