Zeng Caibin, Yang Qigui, Cao Junfei
School of Sciences, South China University of Technology, Guangzhou 510640, China ; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China.
School of Sciences, South China University of Technology, Guangzhou 510640, China.
ScientificWorldJournal. 2014 Jan 15;2014:601327. doi: 10.1155/2014/601327. eCollection 2014.
This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dB (H) (t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation.
本文研究如下一类由具有适当波动率系数Φ的无穷维分数布朗运动扰动的随机偏微分方程(SPDEs):dX(t) = A(X(t))dt + Φ(t)dB^(H)(t),其中A是满足某些单调性条件的非线性算子。利用变分方法,我们证明了此类系统变分解的存在性和唯一性。此外,我们证明了该变分解生成一个随机动力系统。主要结果应用于一类一般的非线性随机偏微分方程和随机广义p - 拉普拉斯方程。