Suppr超能文献

一类一般的随机偏微分方程的解理论。

A solution theory for a general class of SPDEs.

作者信息

Süß André, Waurick Marcus

机构信息

Zurich, Switzerland.

2Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY UK.

出版信息

Stoch Partial Differ Equ. 2017;5(2):278-318. doi: 10.1007/s40072-016-0088-8. Epub 2016 Nov 25.

Abstract

In this article we present a way of treating stochastic partial differential equations with multiplicative noise by rewriting them as stochastically perturbed evolutionary equations in the sense of Picard and McGhee (Partial differential equations: a unified Hilbert space approach, DeGruyter, Berlin, 2011), where a general solution theory for deterministic evolutionary equations has been developed. This allows us to present a unified solution theory for a general class of stochastic partial differential equations (SPDEs) which we believe has great potential for further generalizations. We will show that many standard stochastic PDEs fit into this class as well as many other SPDEs such as the stochastic Maxwell equation and time-fractional stochastic PDEs with multiplicative noise on sub-domains of . The approach is in spirit similar to the approach in DaPrato and Zabczyk (Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 2008), but complementing it in the sense that it does not involve semi-group theory and allows for an effective treatment of coupled systems of SPDEs. In particular, the existence of a (regular) fundamental solution or Green's function is not required.

摘要

在本文中,我们提出了一种处理具有乘性噪声的随机偏微分方程的方法,即将它们重写为皮卡德(Picard)和麦吉(McGhee)意义下的随机扰动发展方程(《偏微分方程:统一的希尔伯特空间方法》,德古意特出版社,柏林,2011年),其中已经发展了确定性发展方程的一般解理论。这使我们能够为一类一般的随机偏微分方程(SPDEs)提出一个统一的解理论,我们认为该理论具有进一步推广的巨大潜力。我们将表明,许多标准的随机偏微分方程以及许多其他的随机偏微分方程,如随机麦克斯韦方程和在 的子区域上具有乘性噪声的时间分数阶随机偏微分方程,都属于这一类。该方法在精神上与达普拉托(DaPrato)和扎布奇克(Zabczyk)的方法(《无穷维随机方程》,剑桥大学出版社,剑桥,2008年)相似,但与之互补的是,它不涉及半群理论,并且允许对随机偏微分方程的耦合系统进行有效处理。特别地,不需要存在(正则)基本解或格林函数。

相似文献

1
A solution theory for a general class of SPDEs.
Stoch Partial Differ Equ. 2017;5(2):278-318. doi: 10.1007/s40072-016-0088-8. Epub 2016 Nov 25.
2
Variational solutions and random dynamical systems to SPDEs perturbed by fractional Gaussian noise.
ScientificWorldJournal. 2014 Jan 15;2014:601327. doi: 10.1155/2014/601327. eCollection 2014.
3
Effective action for stochastic partial differential equations.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Dec;60(6 Pt A):6343-60. doi: 10.1103/physreve.60.6343.
4
Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise.
Stoch Partial Differ Equ. 2023;11(3):1044-1088. doi: 10.1007/s40072-022-00250-0. Epub 2022 Apr 26.
5
Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle.
Stoch Partial Differ Equ. 2019;7(3):417-475. doi: 10.1007/s40072-018-0131-z. Epub 2019 Jan 24.
6
Operator differential-algebraic equations with noise arising in fluid dynamics.
Mon Hefte Math. 2017;182(4):741-780. doi: 10.1007/s00605-016-0931-z. Epub 2016 May 24.
7
Eikonal equations and pathwise solutions to fully non-linear SPDEs.
Stoch Partial Differ Equ. 2017;5(2):256-277. doi: 10.1007/s40072-016-0087-9. Epub 2016 Dec 3.
9
Variational principles for stochastic soliton dynamics.
Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150827. doi: 10.1098/rspa.2015.0827.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验