Rawat P K, Paul B, Banerji P
Materials Science Centre, Indian Institute of Technology , Kharagpur 721302, India.
ACS Appl Mater Interfaces. 2014 Mar 26;6(6):3995-4004. doi: 10.1021/am405410e. Epub 2014 Mar 10.
Motivated by the theoretically predicted Zn resonant states in the conduction band of PbTe, in the present work, we investigated the effect of Zn substitution on the thermoelectric properties in I-doped n-type PbTe. The room temperature thermopower values show good agreement with the theoretical Pisarenko plot of PbTe up to a carrier concentration of 4.17 × 10(19) cm(-3); thus, the presence of Zn resonance levels is not observed. Because of the low solubility of Zn in PbTe, a second phase of coherent ZnTe nanostructures is observed within the PbTe host matrix, which is found to reduce the lattice thermal conductivity. The reduced lattice thermal conductivity in PbTe by ZnTe nanostructures leads to notable enhancement in the figure of merit with a maximum value of 1.35 at 650 K. In contrast to the recent literature, the carrier mobility is not found to be affected by the band offset between ZnTe nanostructures and PbTe. This is explained by the quantum tunneling of the charge carrier through the narrow offset barrier and depletion width and coherent nature of the interface boundary between the two phases, i.e., ZnTe and PbTe.
受理论预测的PbTe导带中Zn共振态的启发,在本工作中,我们研究了Zn替代对I掺杂n型PbTe热电性能的影响。室温热电势值与PbTe的理论皮萨连科曲线在载流子浓度达到4.17×10¹⁹ cm⁻³时显示出良好的一致性;因此,未观察到Zn共振能级的存在。由于Zn在PbTe中的低溶解度,在PbTe主体基质中观察到相干ZnTe纳米结构的第二相,发现其降低了晶格热导率。ZnTe纳米结构使PbTe的晶格热导率降低,导致优值显著提高,在650 K时最大值为1.35。与最近的文献相反,未发现载流子迁移率受ZnTe纳米结构与PbTe之间的能带偏移影响。这是通过电荷载流子通过窄偏移势垒和耗尽宽度的量子隧穿以及两相(即ZnTe和PbTe)之间界面边界的相干性质来解释的。