Yang D-J, Wang X-L, Ismail A, Ashman C J, Valori C F, Wang G, Gao S, Higginbottom A, Ince P G, Azzouz M, Xu J, Shaw P J, Ning K
East Hospital, Tongji University School of Medicine, Shanghai, China.
Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
Cell Death Dis. 2014 Feb 27;5(2):e1096. doi: 10.1038/cddis.2014.55.
Excitatory transmission in the brain is commonly mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In amyotrophic lateral sclerosis (ALS), AMPA receptors allow cytotoxic levels of calcium into neurons, contributing to motor neuron injury. We have previously shown that oculomotor neurons resistant to the disease process in ALS show reduced AMPA-mediated inward calcium currents compared with vulnerable spinal motor neurons. We have also shown that PTEN (phosphatase and tensin homolog deleted on chromosome 10) knockdown via siRNA promotes motor neuron survival in models of spinal muscular atrophy (SMA) and ALS. It has been reported that inhibition of PTEN attenuates the death of hippocampal neurons post injury by decreasing the effective translocation of the GluR2 subunit into the membrane. In addition, leptin can regulate AMPA receptor trafficking via PTEN inhibition. Thus, we speculate that manipulation of AMPA receptors by PTEN may represent a potential therapeutic strategy for neuroprotective intervention in ALS and other neurodegenerative disorders. To this end, the first step is to establish a fibroblast-iPS-motor neuron in vitro cell model to study AMPA receptor manipulation. Here we report that iPS-derived motor neurons from human fibroblasts express AMPA receptors. PTEN depletion decreases AMPA receptor expression and AMPA-mediated whole-cell currents, resulting in inhibition of AMPA-induced neuronal death in primary cultured and iPS-derived motor neurons. Taken together, our results imply that PTEN depletion may protect motor neurons by inhibition of excitatory transmission that represents a therapeutic strategy of potential benefit for the amelioration of excitotoxicity in ALS and other neurodegenerative disorders.
大脑中的兴奋性传递通常由α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体介导。在肌萎缩侧索硬化症(ALS)中,AMPA受体使细胞毒性水平的钙进入神经元,导致运动神经元损伤。我们之前已经表明,与易损的脊髓运动神经元相比,对ALS疾病进程具有抗性的动眼神经神经元表现出AMPA介导的内向钙电流减少。我们还表明,通过小干扰RNA(siRNA)敲低PTEN(第10号染色体缺失的磷酸酶和张力蛋白同源物)可促进脊髓性肌萎缩症(SMA)和ALS模型中的运动神经元存活。据报道,抑制PTEN可通过减少GluR2亚基向膜内的有效转运来减轻损伤后海马神经元的死亡。此外,瘦素可通过抑制PTEN来调节AMPA受体的转运。因此,我们推测PTEN对AMPA受体的调控可能代表了一种对ALS和其他神经退行性疾病进行神经保护干预的潜在治疗策略。为此,第一步是建立一种体外成纤维细胞-诱导多能干细胞-运动神经元细胞模型来研究对AMPA受体的调控。在此我们报告,源自人类成纤维细胞的诱导多能干细胞衍生的运动神经元表达AMPA受体。PTEN缺失会降低AMPA受体表达和AMPA介导的全细胞电流,从而抑制原代培养的和诱导多能干细胞衍生的运动神经元中AMPA诱导的神经元死亡。综上所述,我们的结果表明,PTEN缺失可能通过抑制兴奋性传递来保护运动神经元,这代表了一种对改善ALS和其他神经退行性疾病中的兴奋毒性可能有益的治疗策略。