Hacihaliloghlu Ilker, Rasoulian Abtin, Rohling Robert N, Abolmaesumi Purang
Department of Electrical Engineering, University of British Columbia, Vancouver, B.C., Canada.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):361-8. doi: 10.1007/978-3-642-40763-5_45.
Accurate registration of ultrasound images to statistical shape models is a challenging problem in percutaneous spine injection procedures due to the typical imaging artifacts inherent to ultrasound. In this paper we propose a robust and accurate registration method that matches local phase bone features extracted from ultrasound images to a statistical shape model. The local phase information for enhancing the bone surfaces is obtained using a gradient energy tensor filter, which combines advantages of the monogenic scale-space and Gaussian scale-space filters, resulting in an improved simultaneous estimation of phase and orientation information. A novel statistical shape model was built by separating the pose statistics from the shape statistics. This model is then registered to the local phase bone surfaces using an iterative expectation maximization registration technique. Validation on 96 in vivo clinical scans obtained from eight patients resulted in a root mean square registration error of 2 mm (SD: 0.4 mm), which is below the clinically acceptable threshold of 3.5 mm. The improvement achieved in registration accuracy using the new features was also significant (p < 0.05) compared to state of the art local phase image processing methods.
在经皮脊柱注射手术中,由于超声固有的典型成像伪影,将超声图像准确配准到统计形状模型是一个具有挑战性的问题。在本文中,我们提出了一种稳健且准确的配准方法,该方法将从超声图像中提取的局部相位骨特征与统计形状模型进行匹配。使用梯度能量张量滤波器获得用于增强骨表面的局部相位信息,该滤波器结合了单基因尺度空间滤波器和高斯尺度空间滤波器的优点,从而改进了相位和方向信息的同时估计。通过将姿态统计与形状统计分离,构建了一种新颖的统计形状模型。然后使用迭代期望最大化配准技术将该模型配准到局部相位骨表面。对从八名患者获得的96例体内临床扫描进行验证,结果显示均方根配准误差为2毫米(标准差:0.4毫米),低于3.5毫米的临床可接受阈值。与现有局部相位图像处理方法相比,使用新特征在配准精度上取得的改进也具有显著性(p < 0.05)。