Suppr超能文献

具有可变动力学系数的非平衡系统中表现出的热力学诱导效应。

Thermodynamic induction effects exhibited in nonequilibrium systems with variable kinetic coefficients.

作者信息

Patitsas S N

机构信息

University of Lethbridge, 4401 University Drive, Lethbridge AB, Canada, T1K3M4.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012108. doi: 10.1103/PhysRevE.89.012108. Epub 2014 Jan 8.

Abstract

A nonequilibrium thermodynamic theory demonstrating an induction effect of a statistical nature is presented. We have shown that this thermodynamic induction can arise in a class of systems that have variable kinetic coefficients (VKC). In particular if a kinetic coefficient associated with a given thermodynamic variable depends on another thermodynamic variable then we have derived an expression that can predict the extent of the induction. The amount of induction is shown to be proportional to the square of the driving force. The nature of the intervariable coupling for the induction effect has similarities with the Onsager symmetry relations, though there is an important sign difference as well as the magnitudes not being equal. Thermodynamic induction adds nonlinear terms that improve the stability of stationary states, at least within the VKC class of systems. Induction also produces a term in the expression for the rate of entropy production that could be interpreted as self-organization. Many of these results are also obtained using a variational approach, based on maximizing entropy production, in a certain sense. Nonequilibrium quantities analogous to the free energies of equilibrium thermodynamics are introduced.

摘要

本文提出了一种非平衡热力学理论,该理论证明了一种具有统计性质的诱导效应。我们已经表明,这种热力学诱导可以出现在一类具有可变动力学系数(VKC)的系统中。特别是,如果与给定热力学变量相关的动力学系数取决于另一个热力学变量,那么我们已经推导出一个可以预测诱导程度的表达式。诱导量与驱动力的平方成正比。诱导效应的变量间耦合性质与昂萨格对称关系有相似之处,不过存在一个重要的符号差异,而且量值也不相等。热力学诱导增加了非线性项,至少在VKC类系统中提高了稳态的稳定性。诱导还在熵产生率的表达式中产生一项,该项可解释为自组织。从某种意义上说,许多这些结果也通过基于最大化熵产生的变分方法得到。引入了类似于平衡热力学自由能的非平衡量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验