Qian Hong, Beard Daniel A
Departments of Applied Mathematics and Bioengineering, University of Washington, Seattle, 98195, USA.
Biophys Chem. 2005 Apr 22;114(2-3):213-20. doi: 10.1016/j.bpc.2004.12.001. Epub 2004 Dec 22.
The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.
热力学原理适用于平衡态和非平衡态的生化系统。然而,经典热力学的数学方法主要适用于平衡态系统。我们引入一种热力学形式体系,用于研究处于时间相关和时间无关非平衡态的代谢生化反应(开放、非线性)网络。平衡态热力学中的经典概念——生化反应系统的焓、熵和吉布斯自由能——被推广到非平衡态情形。引入了非平衡态系统中的关键概念:化学驱动力、热耗散率和熵产生(创造)率。根据生化网络的关键可观测量:化学计量矩阵Q、反应通量J和物种μ的化学势,给出了热力学量的动力学方程,而无需援引经验速率定律。为稳态和动态生化网络建立了能量守恒和第二定律。该理论为分析生物体中的大规模代谢网络提供了物理化学基础。