Max-Delbrück Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
University of Geneva, Department of Biochemistry, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland, and Swiss National Centre for Competence in Research Programme Chemical Biology, 1211 Geneva, Switzerland.
Cell. 2014 Feb 27;156(5):882-92. doi: 10.1016/j.cell.2014.02.017.
Biological membranes undergo constant remodeling by membrane fission and fusion to change their shape and to exchange material between subcellular compartments. During clathrin-mediated endocytosis, the dynamic assembly and disassembly of protein scaffolds comprising members of the bin-amphiphysin-rvs (BAR) domain protein superfamily constrain the membrane into distinct shapes as the pathway progresses toward fission by the GTPase dynamin. In this Review, we discuss how BAR domain protein assembly and disassembly are controlled in space and time and which structural and biochemical features allow the tight regulation of their shape and function to enable dynamin-mediated membrane fission.
生物膜通过膜的分裂和融合不断进行重塑,以改变其形状并在亚细胞隔室之间交换物质。在网格蛋白介导的胞吞作用过程中,包含衔接蛋白- amphiphysin-rvs (BAR) 结构域蛋白超家族成员的蛋白质支架的动态组装和拆卸,将膜约束成不同的形状,随着途径向由 GTPase dynamin 介导的分裂方向发展。在这篇综述中,我们讨论了 BAR 结构域蛋白组装和解组装如何在空间和时间上受到控制,以及哪些结构和生化特征允许对其形状和功能进行严格调节,从而实现 dynamin 介导的膜分裂。