Univ. Bordeaux, IMS, CNRS UMR 5218, IPB, Univ. Bordeaux 1, Talence, France; Univ. Bordeaux, LOMA, CNRS UMR 5798, 351 crs Libération, 33405 Talence, France; National Institute for Research and Physicochemical Analysis, BiotechPole, Sidi Thabet, Tunisia.
Univ. Bordeaux, IMS, CNRS UMR 5218, IPB, Univ. Bordeaux 1, Talence, France.
Biosens Bioelectron. 2014 Jul 15;57:162-70. doi: 10.1016/j.bios.2013.12.024. Epub 2014 Jan 22.
This work deals with the design of a highly sensitive whole cell-based biosensor for heavy metal detection in liquid medium. The biosensor is constituted of a Love wave sensor coated with a polyelectrolyte multilayer (PEM). Escherichia coli bacteria are used as bioreceptors as their viscoelastic properties are influenced by toxic heavy metals. The acoustic sensor is constituted of a quartz substrate with interdigitated transducers and a SiO2 guiding layer. However, SiO2 shows some degradation when used in a saline medium. Mesoporous TiO2 presents good mechanical and chemical stability and offers a high active surface area. Then, the addition of a thin titania layer dip-coated onto the acoustic path of the sensor is proposed to overcome the silica degradation and to improve the mass effect sensitivity of the acoustic device. PEM and bacteria deposition, and heavy metal influence, are real time monitored through the resonance frequency variations of the acoustic device. The first polyelectrolyte layer is inserted through the titania mesoporosity, favouring rigid link of the PEM on the sensor and improving the device sensitivity. Also, the mesoporosity of surface increases the specific surface area which can be occupied and favors the formation of homogeneous PEM. It was found a frequency shift near -20±1 kHz for bacteria immobilization with titania film instead of -7±3 kHz with bare silica surface. The sensitivity is highlighted towards cadmium detection. Moreover, in this paper, particular attention is given to the immobilization of bacteria and to biosensor lifetime. Atomic Force Microscopy characterizations of the biosurface have been done for several weeks. They showed significant morphological differences depending on the bacterial life time. We noticed that the lifetime of the biosensor is longer in the case of using a mesoporous TiO2 layer.
这项工作涉及设计一种用于液体介质中重金属检测的高灵敏度全细胞生物传感器。该生物传感器由涂有多聚电解质多层(PEM)的声表面波传感器构成。大肠杆菌被用作生物受体,因为它们的粘弹性性质会受到有毒重金属的影响。声传感器由具有叉指换能器和 SiO2 引导层的石英基底构成。然而,SiO2 在盐溶液中使用时会发生一些降解。介孔 TiO2 具有良好的机械和化学稳定性,并提供高的活性表面积。然后,提出在传感器的声路径上涂覆一层薄的 TiO2 层,以克服 SiO2 的降解并提高声器件的质量效应灵敏度。PEM 和细菌的沉积以及重金属的影响通过声器件的共振频率变化实时监测。第一聚电解质层通过 TiO2 的介孔插入,有利于 PEM 在传感器上的刚性连接并提高器件的灵敏度。此外,表面的介孔增加了可以占据的比表面积并有利于 PEM 的均匀形成。与裸 SiO2 表面相比,发现细菌固定化时的频率偏移约为-20±1 kHz,而 TiO2 薄膜时为-7±3 kHz。该传感器对镉的检测具有较高的灵敏度。此外,本文特别关注细菌的固定化和生物传感器的寿命。对生物表面进行了数周的原子力显微镜(AFM)表征。结果表明,根据细菌的寿命,生物表面的形态有显著差异。我们注意到,在使用介孔 TiO2 层的情况下,生物传感器的寿命更长。