1] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [4] Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [5].
1] Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2].
Nat Genet. 2014 Apr;46(4):364-70. doi: 10.1038/ng.2913. Epub 2014 Mar 2.
The identification of activating NOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL) led to clinical testing of γ-secretase inhibitors (GSIs) that prevent NOTCH1 activation. However, responses to these inhibitors have been transient, suggesting that resistance limits their clinical efficacy. Here we modeled T-ALL resistance, identifying GSI-tolerant 'persister' cells that expand in the absence of NOTCH1 signaling. Rare persisters are already present in naive T-ALL populations, and the reversibility of their phenotype suggests an epigenetic mechanism. Relative to GSI-sensitive cells, persister cells activate distinct signaling and transcriptional programs and exhibit chromatin compaction. A knockdown screen identified chromatin regulators essential for persister viability, including BRD4. BRD4 binds enhancers near critical T-ALL genes, including MYC and BCL2. The BRD4 inhibitor JQ1 downregulates expression of these targets and induces growth arrest and apoptosis in persister cells, at doses well tolerated by GSI-sensitive cells. Consistently, the GSI-JQ1 combination was found to be effective against primary human leukemias in vivo. Our findings establish a role for epigenetic heterogeneity in leukemia resistance that may be addressed by incorporating epigenetic modulators in combination therapy.
NOTCH1 突变在 T 细胞急性淋巴细胞白血病(T-ALL)中的鉴定导致了 γ-分泌酶抑制剂(GSIs)的临床测试,这些抑制剂可以阻止 NOTCH1 的激活。然而,这些抑制剂的反应是短暂的,这表明耐药性限制了它们的临床疗效。在这里,我们模拟了 T-ALL 的耐药性,确定了在没有 NOTCH1 信号的情况下会扩张的 GSI 耐受“持久细胞”。在幼稚的 T-ALL 群体中已经存在罕见的持久细胞,并且其表型的可逆性表明存在表观遗传机制。与 GSI 敏感细胞相比,持久细胞激活不同的信号和转录程序,并表现出染色质紧缩。敲低筛选确定了维持持久细胞活力所必需的染色质调节剂,包括 BRD4。BRD4 结合关键 T-ALL 基因附近的增强子,包括 MYC 和 BCL2。BRD4 抑制剂 JQ1 下调这些靶基因的表达,并在持久细胞中诱导生长停滞和凋亡,而对 GSI 敏感细胞的剂量耐受良好。一致地,发现 GSI-JQ1 联合在体内对原发性人类白血病有效。我们的研究结果确立了表观遗传异质性在白血病耐药性中的作用,通过将表观遗传调节剂纳入联合治疗中可能可以解决这个问题。