Suppr超能文献

主转录因子和中介体在关键细胞身份基因上建立超级增强子。

Master transcription factors and mediator establish super-enhancers at key cell identity genes.

机构信息

Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.

出版信息

Cell. 2013 Apr 11;153(2):307-19. doi: 10.1016/j.cell.2013.03.035.

Abstract

Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity.

摘要

主要转录因子 Oct4、Sox2 和 Nanog 结合增强子元件,并招募 Mediator 来激活多能胚胎干细胞 (ESC) 的大部分基因表达程序。我们在这里报告说,ESC 的主要转录因子在大多数控制多能状态的基因上形成了不寻常的增强子域。我们将这些称为超级增强子的结构域由被主调控因子和 Mediator 密集占据的增强子簇组成。超级增强子在大小、转录因子密度和含量、激活转录的能力以及对干扰的敏感性方面与典型增强子不同。Oct4 或 Mediator 水平降低会导致与其他基因相比,超级增强子相关基因的表达优先丢失,这表明在发育过程中如何实现基因表达程序的变化。在其他分化程度更高的细胞中,在定义细胞身份的基因上也发现了含有细胞类型特异性主转录因子的超级增强子。因此,超级增强子在哺乳动物细胞身份的控制中发挥着关键作用。

相似文献

1
Master transcription factors and mediator establish super-enhancers at key cell identity genes.
Cell. 2013 Apr 11;153(2):307-19. doi: 10.1016/j.cell.2013.03.035.
2
Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes.
Mol Cell. 2019 Dec 5;76(5):753-766.e6. doi: 10.1016/j.molcel.2019.08.016. Epub 2019 Sep 25.
3
Gene expression: Super enhancers.
Nat Rev Genet. 2013 Jun;14(6):367. doi: 10.1038/nrg3496. Epub 2013 Apr 23.
4
Super-enhancers in the control of cell identity and disease.
Cell. 2013 Nov 7;155(4):934-47. doi: 10.1016/j.cell.2013.09.053. Epub 2013 Oct 10.
5
Ash2l interacts with Oct4-stemness circuitry to promote super-enhancer-driven pluripotency network.
Nucleic Acids Res. 2019 Nov 4;47(19):10115-10133. doi: 10.1093/nar/gkz801.
7
Super-enhancers include classical enhancers and facilitators to fully activate gene expression.
Cell. 2023 Dec 21;186(26):5826-5839.e18. doi: 10.1016/j.cell.2023.11.030. Epub 2023 Dec 14.
9
CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells.
PLoS One. 2014 Dec 8;9(12):e114485. doi: 10.1371/journal.pone.0114485. eCollection 2014.
10
Selective inhibition of tumor oncogenes by disruption of super-enhancers.
Cell. 2013 Apr 11;153(2):320-34. doi: 10.1016/j.cell.2013.03.036.

引用本文的文献

4
Super-enhancers in immune system regulation: mechanisms, pathological reprogramming, and therapeutic opportunities.
Front Immunol. 2025 Aug 15;16:1652398. doi: 10.3389/fimmu.2025.1652398. eCollection 2025.
6
Circular RNAs in Heart Diseases.
Adv Exp Med Biol. 2025;1485:255-271. doi: 10.1007/978-981-96-9428-0_17.
7
Machine learning tools for deciphering the regulatory logic of enhancers in health and disease.
Front Genet. 2025 Aug 13;16:1603687. doi: 10.3389/fgene.2025.1603687. eCollection 2025.
8
Precise modulation of BRG1 levels reveals features of mSWI/SNF dosage sensitivity.
Nat Genet. 2025 Aug 22. doi: 10.1038/s41588-025-02305-z.
9
Enhancer regulation in cancer: from epigenetics to mA RNA modification.
Arch Pharm Res. 2025 Aug 19. doi: 10.1007/s12272-025-01561-1.
10
Unveiling the regulatory potential of the non-coding genome: Insights from the human genome project to precision medicine.
Genes Dis. 2025 Apr 22;12(6):101652. doi: 10.1016/j.gendis.2025.101652. eCollection 2025 Nov.

本文引用的文献

1
Positive intergenic feedback circuitry, involving EBF1 and FOXO1, orchestrates B-cell fate.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21028-33. doi: 10.1073/pnas.1211427109. Epub 2012 Dec 4.
2
The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy.
Immunity. 2012 Nov 16;37(5):813-26. doi: 10.1016/j.immuni.2012.08.009. Epub 2012 Oct 25.
3
Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal.
Cell Stem Cell. 2012 Oct 5;11(4):491-504. doi: 10.1016/j.stem.2012.06.008.
4
Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells.
Cell Stem Cell. 2012 Oct 5;11(4):477-90. doi: 10.1016/j.stem.2012.08.002.
5
Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming.
Genes Dev. 2012 Oct 15;26(20):2286-98. doi: 10.1101/gad.195545.112. Epub 2012 Sep 26.
6
An anatomically comprehensive atlas of the adult human brain transcriptome.
Nature. 2012 Sep 20;489(7416):391-399. doi: 10.1038/nature11405.
7
The long-range interaction landscape of gene promoters.
Nature. 2012 Sep 6;489(7414):109-13. doi: 10.1038/nature11279.
8
The accessible chromatin landscape of the human genome.
Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/nature11232.
9
An integrated encyclopedia of DNA elements in the human genome.
Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验