Suppr超能文献

用最少的两性分子稳定的外膜蛋白F形成线性阵列和脂多糖依赖性二维晶体。

Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals.

作者信息

Arunmanee Wanatchaporn, Harris J Robin, Lakey Jeremy H

机构信息

Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.

出版信息

J Membr Biol. 2014 Oct;247(9-10):949-56. doi: 10.1007/s00232-014-9640-5. Epub 2014 Mar 1.

Abstract

Amphipols (APol) are polymers which can solubilise and stabilise membrane proteins (MP) in aqueous solutions. In contrast to conventional detergents, APol are able to keep MP soluble even when the free APol concentration is very low. Outer membrane protein F (OmpF) is the most abundant MP commonly found in the outer membrane (OM) of Escherichia coli. It plays a vital role in the transport of hydrophilic nutrients, as well as antibiotics, across the OM. In the present study, APol was used to solubilise OmpF to characterize its interactions with molecules such as lipopolysaccharides (LPS) or colicins. OmpF was reconstituted into APol by the removal of detergents using Bio-Beads followed by size-exclusion chromatography (SEC) to remove excess APol. OmpF/APol complexes were then analysed by SEC, dynamic light scattering (DLS) and transmission electron microscopy (TEM). TEM showed that in the absence of free APol-OmpF associated as long filaments with a thickness of ~6 nm. This indicates that the OmpF trimers lie on their sides on the carbon EM grid and that they also favour side by side association. The formation of filaments requires APol and occurs very rapidly. Addition of LPS to OmpF/APol complexes impeded filament formation and the trimers form 2D sheets which mimic the OM. Consequently, free APol is undoubtedly required to maintain the homogeneity of OmpF in solutions, but 'minimum APol' provides a new phase, which can allow weaker protein-protein and protein-lipid interactions characteristic of native membranes to take place and thus control 1D-2D crystallisation.

摘要

两性离子聚合物(APol)是一类能够在水溶液中溶解并稳定膜蛋白(MP)的聚合物。与传统去污剂不同,即使游离APol浓度非常低,APol仍能使膜蛋白保持溶解状态。外膜蛋白F(OmpF)是大肠杆菌外膜(OM)中最常见的膜蛋白。它在亲水性营养物质以及抗生素跨外膜的运输中起着至关重要的作用。在本研究中,使用APol溶解OmpF,以表征其与脂多糖(LPS)或大肠杆菌素等分子的相互作用。通过使用Bio-Beads去除去污剂,然后通过尺寸排阻色谱(SEC)去除过量的APol,将OmpF重构到APol中。然后通过SEC、动态光散射(DLS)和透射电子显微镜(TEM)分析OmpF/APol复合物。TEM显示,在没有游离APol的情况下,OmpF以长丝形式结合,厚度约为6 nm。这表明OmpF三聚体以侧面方式排列在碳EM网格上,并且它们也倾向于并排结合。长丝的形成需要APol,并且非常迅速。向OmpF/APol复合物中添加LPS会阻碍长丝形成,三聚体形成模仿外膜的二维片层。因此,游离APol无疑是维持溶液中OmpF均匀性所必需的,但“最小APol”提供了一个新的相,它可以允许天然膜特有的较弱的蛋白质-蛋白质和蛋白质-脂质相互作用发生,从而控制一维到二维的结晶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc3e/4196048/6f16de5d34c7/232_2014_9640_Fig1_HTML.jpg

相似文献

1
Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals.
J Membr Biol. 2014 Oct;247(9-10):949-56. doi: 10.1007/s00232-014-9640-5. Epub 2014 Mar 1.
2
Determining the amphipol distribution within membrane-protein fibre samples using small-angle neutron scattering.
Acta Crystallogr D Struct Biol. 2018 Dec 1;74(Pt 12):1192-1199. doi: 10.1107/S205979831800476X. Epub 2018 Nov 30.
3
Solution behavior and crystallization of cytochrome bc₁ in the presence of amphipols.
J Membr Biol. 2014 Oct;247(9-10):981-96. doi: 10.1007/s00232-014-9694-4. Epub 2014 Jun 19.
4
High-resolution structure of a membrane protein transferred from amphipol to a lipidic mesophase.
J Membr Biol. 2014 Oct;247(9-10):997-1004. doi: 10.1007/s00232-014-9700-x. Epub 2014 Sep 6.
7
Amphipol-trapped ExbB-ExbD membrane protein complex from Escherichia coli: a biochemical and structural case study.
J Membr Biol. 2014 Oct;247(9-10):1005-18. doi: 10.1007/s00232-014-9678-4. Epub 2014 May 27.
8
Isolation of Escherichia coli mannitol permease, EIImtl, trapped in amphipol A8-35 and fluorescein-labeled A8-35.
J Membr Biol. 2014 Oct;247(9-10):1019-30. doi: 10.1007/s00232-014-9691-7. Epub 2014 Jun 22.
9
Colicin N binds to the periphery of its receptor and translocator, outer membrane protein F.
Structure. 2008 Mar;16(3):371-9. doi: 10.1016/j.str.2007.12.023.
10
The orientation of porin OmpF in the outer membrane of Escherichia coli.
J Mol Biol. 1993 Oct 5;233(3):400-13. doi: 10.1006/jmbi.1993.1520.

引用本文的文献

1
Exploiting neutron scattering contrast variation in biological membrane studies.
Biophys Rev (Melville). 2022 Jun 14;3(2):021307. doi: 10.1063/5.0091372. eCollection 2022 Jun.
2
reconstruction of small angle scattering data for membrane proteins in copolymer nanodiscs.
BBA Adv. 2021 Dec 16;2:100033. doi: 10.1016/j.bbadva.2021.100033. eCollection 2022.
3
A Surfactant Enables Efficient Membrane Spanning by Non-Aggregating DNA-Based Ion Channels.
Molecules. 2022 Jan 17;27(2):578. doi: 10.3390/molecules27020578.
4
Localized incorporation of outer membrane components in the pathogen .
EMBO J. 2019 Mar 1;38(5). doi: 10.15252/embj.2018100323. Epub 2019 Jan 11.
5
Determining the amphipol distribution within membrane-protein fibre samples using small-angle neutron scattering.
Acta Crystallogr D Struct Biol. 2018 Dec 1;74(Pt 12):1192-1199. doi: 10.1107/S205979831800476X. Epub 2018 Nov 30.
7
Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E5034-43. doi: 10.1073/pnas.1602382113. Epub 2016 Aug 4.
8
High-resolution structure of a membrane protein transferred from amphipol to a lipidic mesophase.
J Membr Biol. 2014 Oct;247(9-10):997-1004. doi: 10.1007/s00232-014-9700-x. Epub 2014 Sep 6.
9
Amphipols for each season.
J Membr Biol. 2014 Oct;247(9-10):759-96. doi: 10.1007/s00232-014-9666-8. Epub 2014 Jun 27.
10
Solution behavior and crystallization of cytochrome bc₁ in the presence of amphipols.
J Membr Biol. 2014 Oct;247(9-10):981-96. doi: 10.1007/s00232-014-9694-4. Epub 2014 Jun 19.

本文引用的文献

1
TRPV1 structures in distinct conformations reveal activation mechanisms.
Nature. 2013 Dec 5;504(7478):113-8. doi: 10.1038/nature12823.
2
Structure of the TRPV1 ion channel determined by electron cryo-microscopy.
Nature. 2013 Dec 5;504(7478):107-12. doi: 10.1038/nature12822.
3
The unstructured domain of colicin N kills Escherichia coli.
Mol Microbiol. 2013 Jul;89(1):84-95. doi: 10.1111/mmi.12260. Epub 2013 Jun 5.
4
Low resolution structure and dynamics of a colicin-receptor complex determined by neutron scattering.
J Biol Chem. 2012 Jan 2;287(1):337-346. doi: 10.1074/jbc.M111.302901. Epub 2011 Nov 10.
6
Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy.
J Biol Chem. 2011 Nov 4;286(44):38168-38176. doi: 10.1074/jbc.M111.288993. Epub 2011 Sep 9.
7
Quantitative determination of ion distributions in bacterial lipopolysaccharide membranes by grazing-incidence X-ray fluorescence.
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9147-51. doi: 10.1073/pnas.0913737107. Epub 2010 May 4.
9
High-resolution architecture of the outer membrane of the Gram-negative bacteria Roseobacter denitrificans.
Mol Microbiol. 2009 Dec;74(5):1211-22. doi: 10.1111/j.1365-2958.2009.06926.x. Epub 2009 Oct 15.
10
Solution NMR mapping of water-accessible residues in the transmembrane beta-barrel of OmpX.
Eur Biophys J. 2010 Mar;39(4):623-30. doi: 10.1007/s00249-009-0513-2. Epub 2009 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验