Suppr超能文献

多发性骨髓瘤中的复杂 IGH 重排:三种不同探针集之间频繁的检测差异。

Complex IGH rearrangements in multiple myeloma: Frequent detection discrepancies among three different probe sets.

机构信息

Genetics Branch, National Cancer Institute, Bethesda, MD.

出版信息

Genes Chromosomes Cancer. 2014 Jun;53(6):467-74. doi: 10.1002/gcc.22158. Epub 2014 Mar 3.

Abstract

Primary IGH translocations involving seven recurrent partner loci and oncogenes are present in about 40% of multiple myeloma tumors. Secondary IGH rearrangements, which occur in a smaller fraction of tumors, usually are complex structures, including insertions or translocations that can involve three chromosomes, and often with involvement of MYC. The main approach to detect IGH rearrangements is interphase-but sometimes metaphase-FISH strategies that use a telomeric variable region probe and a centromeric constant region/ Eα enhancer or 3' flanking probe to detect a separation of these two probes, or a fusion of these probes with probes located at nonrandom partner sites in the genome. We analyzed 18 myeloma cell lines for detection discrepancies among Vysis, Cytocell, and in-house IGH probe sets that hybridize with differing sequences in the IGH locus. There were no detection discrepancies for the three telomeric IGH probes, or for unrearranged IGH loci or primary IGH translocations using the centromeric IGH probes. However, the majority of complex IGH rearrangements had detection discrepancies among the three centromeric IGH probes.

摘要

原发性 IGH 易位涉及七个常见的伙伴基因座和癌基因,存在于大约 40%的多发性骨髓瘤肿瘤中。继发性 IGH 重排发生在肿瘤的较小部分,通常是复杂的结构,包括插入或易位,可能涉及三个染色体,并且通常涉及 MYC。检测 IGH 重排的主要方法是间期-FISH 策略,该策略使用端粒可变区探针和着丝粒恒定区/Eα 增强子或 3' 侧翼探针来检测这两个探针的分离,或这些探针与位于基因组中非随机伙伴位置的探针融合。我们分析了 18 个骨髓瘤细胞系,以检测 Vysis、Cytocell 和内部 IGH 探针组在 IGH 基因座中不同序列杂交时的检测差异。三个端粒 IGH 探针、未重排的 IGH 基因座或使用着丝粒 IGH 探针的原发性 IGH 易位没有检测差异。然而,大多数复杂的 IGH 重排存在三个着丝粒 IGH 探针之间的检测差异。

相似文献

1
Complex IGH rearrangements in multiple myeloma: Frequent detection discrepancies among three different probe sets.
Genes Chromosomes Cancer. 2014 Jun;53(6):467-74. doi: 10.1002/gcc.22158. Epub 2014 Mar 3.
4
High incidence of cryptic translocations involving the Ig heavy chain gene in multiple myeloma, as shown by fluorescence in situ hybridization.
Genes Chromosomes Cancer. 1999 Jan;24(1):9-15. doi: 10.1002/(sici)1098-2264(199901)24:1<9::aid-gcc2>3.0.co;2-k.
6
Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors.
Blood. 2001 Nov 15;98(10):3082-6. doi: 10.1182/blood.v98.10.3082.
8
Cytogenetics of multiple myeloma: interpretation of fluorescence in situ hybridization results.
Br J Haematol. 2003 Mar;120(6):944-52. doi: 10.1046/j.1365-2141.2003.04172.x.

引用本文的文献

1
Molecular genetic aberrations in the pathogenesis of multiple myeloma.
Asian Biomed (Res Rev News). 2023 Oct 18;17(4):152-162. doi: 10.2478/abm-2023-0056. eCollection 2023 Aug.
2
Lifetime Pesticide Use and Monoclonal Gammopathy of Undetermined Significance in a Prospective Cohort of Male Farmers.
Environ Health Perspect. 2021 Jan;129(1):17003. doi: 10.1289/EHP6960. Epub 2021 Jan 6.

本文引用的文献

2
Cancer statistics, 2013.
CA Cancer J Clin. 2013 Jan;63(1):11-30. doi: 10.3322/caac.21166. Epub 2013 Jan 17.
3
Molecular pathogenesis of multiple myeloma and its premalignant precursor.
J Clin Invest. 2012 Oct;122(10):3456-63. doi: 10.1172/JCI61188. Epub 2012 Oct 1.
7
Distinguishing primary and secondary translocations in multiple myeloma.
DNA Repair (Amst). 2006 Sep 8;5(9-10):1225-33. doi: 10.1016/j.dnarep.2006.05.012. Epub 2006 Jul 10.
8
Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma.
Leukemia. 2006 Sep;20(9):1610-7. doi: 10.1038/sj.leu.2404304. Epub 2006 Jul 6.
10
Genetics and cytogenetics of multiple myeloma: a workshop report.
Cancer Res. 2004 Feb 15;64(4):1546-58. doi: 10.1158/0008-5472.can-03-2876.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验