Hammond Matthew P, Kolasa Jurek
Department of Biology, McMaster University, Hamilton, Ontario, Canada.
PLoS One. 2014 Feb 20;9(2):e89245. doi: 10.1371/journal.pone.0089245. eCollection 2014.
Ecological processes, like the rise and fall of populations, leave an imprint of their dynamics as a pattern in space. Mining this spatial record for insight into temporal change underlies many applications, including using spatial snapshots to infer trends in communities, rates of species spread across boundaries, likelihood of chaotic dynamics, and proximity to regime shifts. However, these approaches rely on an inherent but undefined link between spatial and temporal variation. We present a quantitative link between a variable's spatial and temporal variation based on established variance-partitioning techniques, and test it for predictive and diagnostic applications. A strong link existed between spatial and regional temporal variation (estimated as Coefficients of Variation or CV's) in 136 variables from three aquatic ecosystems. This association suggests a basis for substituting one for the other, either quantitatively or qualitatively, when long time series are lacking. We further show that weak substitution of temporal for spatial CV results from distortion by specific spatiotemporal patterns (e.g., inter-patch synchrony). Where spatial and temporal CV's do not match, we pinpoint the spatiotemporal causes of deviation in the dynamics of variables and suggest ways that may control for them. In turn, we demonstrate the use of this framework for describing spatiotemporal patterns in multiple ecosystem variables and attributing them to types of mechanisms. Linking spatial and temporal variability makes quantitative the hitherto inexact practice of space-for-time substitution and may thus point to new opportunities for navigating the complex variation of ecosystems.
生态过程,如种群的兴衰,会在空间上留下其动态模式的印记。挖掘这一空间记录以洞察时间变化是许多应用的基础,包括利用空间快照推断群落趋势、物种跨边界扩散速率、混沌动态的可能性以及接近状态转变的程度。然而,这些方法依赖于空间和时间变化之间固有的但未明确的联系。我们基于既定的方差分解技术,提出了变量的空间和时间变化之间的定量联系,并对其进行预测和诊断应用测试。来自三个水生生态系统的136个变量的空间和区域时间变化(以变异系数或CV估计)之间存在很强的联系。这种关联表明,在缺乏长时间序列时,在定量或定性方面用一个替代另一个具有一定的基础。我们进一步表明,用时间CV弱替代空间CV是由特定的时空模式(如斑块间同步)造成的扭曲导致的。当空间和时间CV不匹配时,我们指出变量动态中偏差的时空原因,并提出可能控制这些原因的方法。反过来,我们展示了这个框架用于描述多个生态系统变量中的时空模式并将其归因于机制类型的用途。将空间和时间变异性联系起来,使迄今不精确的时空替代实践变得量化,从而可能为应对生态系统的复杂变化指明新的机会。