Suppr超能文献

三维空间中的群落生态学:张量分解揭示大型生态群落的时空动态。

Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities.

作者信息

Frelat Romain, Lindegren Martin, Dencker Tim Spaanheden, Floeter Jens, Fock Heino O, Sguotti Camilla, Stäbler Moritz, Otto Saskia A, Möllmann Christian

机构信息

University of Hamburg, Institute for Hydrobiology and Fisheries Science, Center for Earth System Research and Sustainability (CEN), KlimaCampus Hamburg, Große Elbstraße 133, Hamburg, Germany.

Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Bygning 202, Kgs. Lyngby, Denmark.

出版信息

PLoS One. 2017 Nov 14;12(11):e0188205. doi: 10.1371/journal.pone.0188205. eCollection 2017.

Abstract

Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.

摘要

了解包含大量物种的生物群落的时空动态对于指导生态系统管理和保护工作至关重要。然而,传统方法通常侧重于研究群落动态的空间或时间维度,往往无法充分考虑相互关联的时空变化。在本研究中,我们展示并推广了使用张量分解来解析长期监测数据中的时空群落动态。张量分解基于传统多元统计(如主成分分析),但将其扩展到多个维度。这种扩展允许同步研究在时间和空间上重复测量的多个生态变量。我们应用这种综合方法来探索北海65种底栖鱼类物种的时空动态,北海是一个受到人类活动和气候变化强烈影响的海洋生态系统。我们的案例研究展示了张量分解如何成功地(i)表征物种丰度的主要时空模式和趋势,(ii)识别具有相似空间分布和时间动态的物种子群落,以及(iii)揭示变化的外部驱动因素。我们的结果揭示了鱼类群落中随时间持续存在的强大空间结构,并与深度、初级生产力和季节性差异相关。此外,我们同时表征了与大西洋多年代际振荡中固有的低频温度变化相关的重要时间分布变化。最后,我们识别出由具有相似空间分布模式和时间动态的物种组成的六个主要子群落。我们的案例研究展示了使用张量分解来研究通常来自大规模监测项目的复杂群落数据集的应用和益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd83/5685633/5e37ec57c278/pone.0188205.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验