Suppr超能文献

Syndecan-1调节血管平滑肌细胞表型。

Syndecan-1 regulates vascular smooth muscle cell phenotype.

作者信息

Chaterji Somali, Lam Christoffer H, Ho Derek S, Proske Daniel C, Baker Aaron B

机构信息

Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America.

出版信息

PLoS One. 2014 Feb 25;9(2):e89824. doi: 10.1371/journal.pone.0089824. eCollection 2014.

Abstract

OBJECTIVE

We examined the role of syndecan-1 in modulating the phenotype of vascular smooth muscle cells in the context of endogenous inflammatory factors and altered microenvironments that occur in disease or injury-induced vascular remodeling.

METHODS AND RESULTS

Vascular smooth muscle cells (vSMCs) display a continuum of phenotypes that can be altered during vascular remodeling. While the syndecans have emerged as powerful and complex regulators of cell function, their role in controlling vSMC phenotype is unknown. Here, we isolated vSMCs from wild type (WT) and syndecan-1 knockout (S1KO) mice. Gene expression and western blotting studies indicated decreased levels of α-smooth muscle actin (α-SMA), calponin, and other vSMC-specific differentiation markers in S1KO relative to WT cells. The spread area of the S1KO cells was found to be greater than WT cells, with a corresponding increase in focal adhesion formation, Src phosphorylation, and alterations in actin cytoskeletal arrangement. In addition, S1KO led to increased S6RP phosphorylation and decreased AKT and PKC-α phosphorylation. To examine whether these changes were present in vivo, isolated aortae from aged WT and S1KO mice were stained for calponin. Consistent with our in-vitro findings, the WT mice aortae stained higher for calponin relative to S1KO. When exposed to the inflammatory cytokine TNF-α, WT vSMCs had an 80% reduction in syndecan-1 expression. Further, with TNF-α, S1KO vSMCs produced increased pro-inflammatory cytokines relative to WT. Finally, inhibition of interactions between syndecan-1 and integrins αvβ3 and αvβ5 using the inhibitory peptide synstatin appeared to have similar effects on vSMCs as knocking out syndecan-1, with decreased expression of vSMC differentiation markers and increased expression of inflammatory cytokines, receptors, and osteopontin.

CONCLUSIONS

Taken together, our results support that syndecan-1 promotes vSMC differentiation and quiescence. Thus, the presence of syndecan-1 would have a protective effect against vSMC dedifferentiation and this activity is linked to interactions with integrins αvβ3 and αvβ5.

摘要

目的

我们研究了Syndecan-1在内源性炎症因子以及疾病或损伤诱导的血管重塑过程中发生的微环境改变的背景下,对血管平滑肌细胞表型调节的作用。

方法与结果

血管平滑肌细胞(vSMC)表现出一系列在血管重塑过程中可发生改变的表型。虽然Syndecans已成为细胞功能强大而复杂的调节因子,但其在控制vSMC表型中的作用尚不清楚。在此,我们从野生型(WT)和Syndecan-1基因敲除(S1KO)小鼠中分离出vSMC。基因表达和蛋白质印迹研究表明,相对于WT细胞,S1KO细胞中α-平滑肌肌动蛋白(α-SMA)、钙调蛋白和其他vSMC特异性分化标志物的水平降低。发现S1KO细胞的铺展面积大于WT细胞,同时粘着斑形成、Src磷酸化相应增加,肌动蛋白细胞骨架排列发生改变。此外,S1KO导致S6RP磷酸化增加,AKT和PKC-α磷酸化降低。为了检查这些变化在体内是否存在,对老年WT和S1KO小鼠分离的主动脉进行钙调蛋白染色。与我们的体外研究结果一致,WT小鼠主动脉中钙调蛋白染色相对于S1KO更高。当暴露于炎性细胞因子TNF-α时,WT vSMC中Syndecan-1表达降低80%。此外,对于TNF-α,相对于WT,S1KO vSMC产生的促炎细胞因子增加。最后,使用抑制性肽synstatin抑制Syndecan-1与整合素αvβ3和αvβ5之间的相互作用,似乎对vSMC产生与敲除Syndecan-1类似的作用,vSMC分化标志物表达降低,炎性细胞因子、受体和骨桥蛋白表达增加。

结论

综上所述,我们的结果支持Syndecan-1促进vSMC分化和静止。因此,Syndecan-1的存在对vSMC去分化具有保护作用,且这种活性与整合素αvβ3和αvβ5的相互作用有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac95/3934950/ee31b27fdb37/pone.0089824.g001.jpg

相似文献

1
Syndecan-1 regulates vascular smooth muscle cell phenotype.
PLoS One. 2014 Feb 25;9(2):e89824. doi: 10.1371/journal.pone.0089824. eCollection 2014.
2
MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation.
Circ Res. 2013 Oct 25;113(10):1117-27. doi: 10.1161/CIRCRESAHA.113.301306. Epub 2013 Sep 6.
3
Osteopontin regulates α-smooth muscle actin and calponin in vascular smooth muscle cells.
Cell Biol Int. 2012 Feb;36(2):155-61. doi: 10.1042/CBI20100240.
4
Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.
Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):960-72. doi: 10.1161/ATVBAHA.114.304412. Epub 2015 Jan 15.
6
Impaired vascular smooth muscle cell force-generating capacity and phenotypic deregulation in Marfan Syndrome mice.
Biochim Biophys Acta Mol Basis Dis. 2020 Jan 1;1866(1):165587. doi: 10.1016/j.bbadis.2019.165587. Epub 2019 Oct 31.
7
Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype.
Arterioscler Thromb Vasc Biol. 2007 Jan;27(1):42-8. doi: 10.1161/01.ATV.0000251500.94478.18. Epub 2006 Nov 2.
8
microRNA let-7g suppresses PDGF-induced conversion of vascular smooth muscle cell into the synthetic phenotype.
J Cell Mol Med. 2017 Dec;21(12):3592-3601. doi: 10.1111/jcmm.13269. Epub 2017 Jul 12.

引用本文的文献

1
Mechanobiology of the blood-brain barrier during development, disease and ageing.
Nat Commun. 2025 Aug 6;16(1):7233. doi: 10.1038/s41467-025-61888-7.
2
Unraveling LncRNA GAS5 in Atherosclerosis: Mechanistic Insights and Clinical Translation.
Biology (Basel). 2025 Jun 13;14(6):697. doi: 10.3390/biology14060697.
5
Novel homozygous nonsense mutation of MLIP and compensatory alternative splicing.
NPJ Genom Med. 2022 Jun 7;7(1):36. doi: 10.1038/s41525-022-00307-y.
6
Syndecan-1 Is Overexpressed in Human Thoracic Aneurysm but Is Dispensable for the Disease Progression in a Mouse Model.
Front Cardiovasc Med. 2022 Apr 25;9:839743. doi: 10.3389/fcvm.2022.839743. eCollection 2022.
7
Comprehensive Analysis of Endoplasmic Reticulum Stress in Intracranial Aneurysm.
Front Cell Neurosci. 2022 Apr 6;16:865005. doi: 10.3389/fncel.2022.865005. eCollection 2022.
8
Sex-Differences in Aortic Stenosis: Mechanistic Insights and Clinical Implications.
Front Cardiovasc Med. 2022 Feb 24;9:818371. doi: 10.3389/fcvm.2022.818371. eCollection 2022.
9
Cell and Tissue Nanomechanics: From Early Development to Carcinogenesis.
Biomedicines. 2022 Feb 1;10(2):345. doi: 10.3390/biomedicines10020345.
10
MiR-665 Regulates Vascular Smooth Muscle Cell Senescence by Interacting With LncRNA GAS5/SDC1.
Front Cell Dev Biol. 2021 Jul 27;9:700006. doi: 10.3389/fcell.2021.700006. eCollection 2021.

本文引用的文献

1
MicroRNA Regulation of Smooth Muscle Phenotype.
Mol Cell Pharmacol. 2012 Jan 1;4(1):1-16.
2
Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function.
Tissue Eng Part A. 2014 Aug;20(15-16):2115-26. doi: 10.1089/ten.tea.2013.0455. Epub 2014 Apr 2.
3
Heparan sulfate in the nucleus and its control of cellular functions.
Matrix Biol. 2014 Apr;35:56-9. doi: 10.1016/j.matbio.2013.10.009. Epub 2013 Dec 3.
4
Overcoming disease-induced growth factor resistance in therapeutic angiogenesis using recombinant co-receptors delivered by a liposomal system.
Biomaterials. 2014 Jan;35(1):196-205. doi: 10.1016/j.biomaterials.2013.09.105. Epub 2013 Oct 16.
6
Soluble JAGGED1 inhibits pulmonary hypertension by attenuating notch signaling.
Arterioscler Thromb Vasc Biol. 2013 Dec;33(12):2733-9. doi: 10.1161/ATVBAHA.113.302062. Epub 2013 Sep 26.
7
Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via Akt/FoxO/myocardin signaling.
PLoS One. 2013;8(3):e58746. doi: 10.1371/journal.pone.0058746. Epub 2013 Mar 15.
9
Coronary aspirate TNFα reflects saphenous vein bypass graft restenosis risk in diabetic patients.
Cardiovasc Diabetol. 2013 Jan 10;12:12. doi: 10.1186/1475-2840-12-12.
10
Syndecan 4 regulation of PDK1-dependent Akt activation.
Cell Signal. 2013 Jan;25(1):101-5. doi: 10.1016/j.cellsig.2012.09.007. Epub 2012 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验