Suppr超能文献

用于检验GGE和AMMI模型中乘性项的参数自助法。

Parametric bootstrap methods for testing multiplicative terms in GGE and AMMI models.

作者信息

Forkman Johannes, Piepho Hans-Peter

机构信息

Department of Crop Production Ecology, Swedish University of Agricultural Sciences, PO Box 7043, 750 07 Uppsala, Sweden.

Institute of Crop Science, University of Hohenheim, 70 593 Stuttgart, Germany.

出版信息

Biometrics. 2014 Sep;70(3):639-47. doi: 10.1111/biom.12162. Epub 2014 Mar 3.

Abstract

The genotype main effects and genotype-by-environment interaction effects (GGE) model and the additive main effects and multiplicative interaction (AMMI) model are two common models for analysis of genotype-by-environment data. These models are frequently used by agronomists, plant breeders, geneticists and statisticians for analysis of multi-environment trials. In such trials, a set of genotypes, for example, crop cultivars, are compared across a range of environments, for example, locations. The GGE and AMMI models use singular value decomposition to partition genotype-by-environment interaction into an ordered sum of multiplicative terms. This article deals with the problem of testing the significance of these multiplicative terms in order to decide how many terms to retain in the final model. We propose parametric bootstrap methods for this problem. Models with fixed main effects, fixed multiplicative terms and random normally distributed errors are considered. Two methods are derived: a full and a simple parametric bootstrap method. These are compared with the alternatives of using approximate F-tests and cross-validation. In a simulation study based on four multi-environment trials, both bootstrap methods performed well with regard to Type I error rate and power. The simple parametric bootstrap method is particularly easy to use, since it only involves repeated sampling of standard normally distributed values. This method is recommended for selecting the number of multiplicative terms in GGE and AMMI models. The proposed methods can also be used for testing components in principal component analysis.

摘要

基因型主效应和基因型与环境互作效应(GGE)模型以及加性主效应和乘积互作(AMMI)模型是分析基因型与环境数据的两种常用模型。农学家、植物育种家、遗传学家和统计学家经常使用这些模型来分析多环境试验。在这类试验中,会在一系列环境(例如不同地点)中比较一组基因型(例如作物品种)。GGE和AMMI模型使用奇异值分解将基因型与环境的互作分解为乘积项的有序和。本文探讨了检验这些乘积项显著性的问题,以便决定在最终模型中保留多少项。我们针对此问题提出了参数自助法。考虑了具有固定主效应、固定乘积项和随机正态分布误差的模型。推导了两种方法:一种是完全参数自助法,另一种是简单参数自助法。将它们与使用近似F检验和交叉验证的方法进行了比较。在基于四项多环境试验的模拟研究中,两种自助法在一类错误率和检验功效方面表现良好。简单参数自助法特别易于使用,因为它只涉及对标准正态分布值的重复抽样。推荐使用此方法来选择GGE和AMMI模型中乘积项的数量。所提出的方法也可用于检验主成分分析中的成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验