Suppr超能文献

LRRK2 中的帕金森病相关突变 R1441H 延长了其 GTPase 结构域的“活性状态”。

Parkinson disease-associated mutation R1441H in LRRK2 prolongs the "active state" of its GTPase domain.

机构信息

Department of Biochemistry and Molecular Biology and Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN 46202.

出版信息

Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4055-60. doi: 10.1073/pnas.1323285111. Epub 2014 Mar 3.

Abstract

Mutation in leucine-rich-repeat kinase 2 (LRRK2) is a common cause of Parkinson disease (PD). A disease-causing point mutation R1441H/G/C in the GTPase domain of LRRK2 leads to overactivation of its kinase domain. However, the mechanism by which this mutation alters the normal function of its GTPase domain [Ras of complex proteins (Roc)] remains unclear. Here, we report the effects of R1441H mutation (RocR1441H) on the structure and activity of Roc. We show that Roc forms a stable monomeric conformation in solution that is catalytically active, thus demonstrating that LRRK2 is a bona fide self-contained GTPase. We further show that the R1441H mutation causes a twofold reduction in GTPase activity without affecting the structure, thermal stability, and GDP-binding affinity of Roc. However, the mutation causes a twofold increase in GTP-binding affinity of Roc, thus suggesting that the PD-causing mutation R1441H traps Roc in a more persistently activated state by increasing its affinity for GTP and, at the same time, compromising its GTP hydrolysis.

摘要

LRRK2 中的亮氨酸丰富重复激酶 2 (LRRK2)突变是帕金森病(PD)的常见原因。LRRK2 的 GTPase 结构域中的致病点突变 R1441H/G/C 导致其激酶结构域的过度激活。然而,该突变如何改变其 GTPase 结构域[复杂蛋白的 Ras(Roc)]的正常功能仍不清楚。在这里,我们报告了 R1441H 突变(RocR1441H)对 Roc 的结构和活性的影响。我们表明,Roc 在溶液中形成稳定的单体构象,具有催化活性,从而证明 LRRK2 是一种真正的自成一体的 GTPase。我们进一步表明,R1441H 突变导致 GTPase 活性降低两倍,而不影响 Roc 的结构、热稳定性和 GDP 结合亲和力。然而,该突变导致 Roc 的 GTP 结合亲和力增加两倍,因此表明致病突变 R1441H 通过增加其与 GTP 的亲和力并同时损害其 GTP 水解,将 Roc 困在更持久激活的状态。

相似文献

1
Parkinson disease-associated mutation R1441H in LRRK2 prolongs the "active state" of its GTPase domain.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4055-60. doi: 10.1073/pnas.1323285111. Epub 2014 Mar 3.
2
The Parkinson's disease-associated mutation N1437H impairs conformational dynamics in the G domain of LRRK2.
FASEB J. 2019 Apr;33(4):4814-4823. doi: 10.1096/fj.201802031R. Epub 2018 Dec 28.
3
GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2.
Hum Mol Genet. 2013 Mar 15;22(6):1140-56. doi: 10.1093/hmg/dds522. Epub 2012 Dec 13.
5
Functional properties of LRRK2 mutations in Taiwanese Parkinson disease.
J Formos Med Assoc. 2017 Mar;116(3):197-204. doi: 10.1016/j.jfma.2016.04.009. Epub 2016 Jul 14.
6
Parkinson's disease-associated mutations in the GTPase domain of LRRK2 impair its nucleotide-dependent conformational dynamics.
J Biol Chem. 2019 Apr 12;294(15):5907-5913. doi: 10.1074/jbc.RA119.007631. Epub 2019 Feb 22.
8
Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1499-504. doi: 10.1073/pnas.0709098105. Epub 2008 Jan 29.
9
The GTPase function of LRRK2.
Biochem Soc Trans. 2012 Oct;40(5):1063-9. doi: 10.1042/BST20120133.
10
Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants.
J Neurochem. 2007 Oct;103(1):238-47. doi: 10.1111/j.1471-4159.2007.04743.x. Epub 2007 Jul 10.

引用本文的文献

1
LRRK2 rare-variant per-domain genetic burden in Parkinson's Disease: association confined to the kinase domain.
NPJ Parkinsons Dis. 2025 Apr 29;11(1):102. doi: 10.1038/s41531-025-00934-z.
3
LRRK2 in Parkinson's disease: upstream regulation and therapeutic targeting.
Trends Mol Med. 2024 Oct;30(10):982-996. doi: 10.1016/j.molmed.2024.07.003. Epub 2024 Aug 16.
4
Membrane remodeling properties of the Parkinson's disease protein LRRK2.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2309698120. doi: 10.1073/pnas.2309698120. Epub 2023 Oct 16.
6
Large-scale rare variant burden testing in Parkinson's disease.
Brain. 2023 Nov 2;146(11):4622-4632. doi: 10.1093/brain/awad214.
7
Overview of the Impact of Pathogenic LRRK2 Mutations in Parkinson's Disease.
Biomolecules. 2023 May 16;13(5):845. doi: 10.3390/biom13050845.
8
LRRK2 Structure-Based Activation Mechanism and Pathogenesis.
Biomolecules. 2023 Mar 28;13(4):612. doi: 10.3390/biom13040612.

本文引用的文献

1
Regulation of small GTPases by GEFs, GAPs, and GDIs.
Physiol Rev. 2013 Jan;93(1):269-309. doi: 10.1152/physrev.00003.2012.
2
The crystal structure of dynamin.
Nature. 2011 Sep 18;477(7366):561-6. doi: 10.1038/nature10441.
3
Crystal structure of nucleotide-free dynamin.
Nature. 2011 Sep 18;477(7366):556-60. doi: 10.1038/nature10369.
4
Chronicles of the GTPase switch.
Nat Chem Biol. 2011 Jul 18;7(8):493-5. doi: 10.1038/nchembio.608.
5
The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease.
Nat Rev Neurosci. 2010 Dec;11(12):791-7. doi: 10.1038/nrn2935. Epub 2010 Nov 19.
7
Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase.
EMBO J. 2008 Aug 20;27(16):2239-49. doi: 10.1038/emboj.2008.150. Epub 2008 Jul 24.
8
Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1499-504. doi: 10.1073/pnas.0709098105. Epub 2008 Jan 29.
9
Mutations in LRRK2 as a cause of Parkinson's disease.
Neurosignals. 2008;16(1):99-105. doi: 10.1159/000109764. Epub 2007 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验