Zhou Weijia, Liu Xiaojun, Sang Yuanhua, Zhao Zhenhuan, Zhou Kai, Liu Hong, Chen Shaowei
New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China.
ACS Appl Mater Interfaces. 2014 Mar 26;6(6):4578-86. doi: 10.1021/am500421r. Epub 2014 Mar 12.
Titania nanostructured materials have been used extensively for the fabrication of electrochemical capacitors. However, the devices typically exhibit relatively low capacitance and poor cycling stability. Herein, we report the synthesis of a core-shell heterostructure based on layered titanate nanowires coated with nickel hydroxide nanosheets on a titanium mesh, referred to as K2Ti4O9@Ni(OH)2/Ti, by a simple nickel ion exchange reaction. The incorporation of nickel into the titanate nanowires is confirmed by X-ray photoelectron spectroscopic measurements and elemental mapping. Scanning electron microscopic and transmission electron microscopic measurements show the formation of a highly porous network of the hybrid nanowires. Electrochemical studies show that the K2Ti4O9@Ni(OH)2/Ti electrodes possess a high specific capacitance of 340 mF/cm(2) at 50 mV/s in an aqueous electrolyte of 3 M KOH and 3 mF/cm(2) at 0.04 mA/cm(2) in the KOH/PVA solid-state electrolyte, with an excellent retention rate of 92.5% after 2000 cycles and 92.7% after 10 000 cycles, respectively. Such a performance is a few tens of times better than that of the unmodified K2Ti4O9/Ti electrode. The enhanced capability of the chemically modified titanate electrodes may open up new opportunities in the development of low-cost, high-performance, and flexible supercapacitors.
二氧化钛纳米结构材料已被广泛用于制造电化学电容器。然而,这些器件通常表现出相对较低的电容和较差的循环稳定性。在此,我们报告了通过简单的镍离子交换反应,在钛网上合成了一种基于层状钛酸盐纳米线包覆氢氧化镍纳米片的核壳异质结构,称为K2Ti4O9@Ni(OH)2/Ti。通过X射线光电子能谱测量和元素映射证实了镍掺入钛酸盐纳米线中。扫描电子显微镜和透射电子显微镜测量表明形成了混合纳米线的高度多孔网络。电化学研究表明,K2Ti4O9@Ni(OH)2/Ti电极在3 M KOH的水性电解质中,在50 mV/s时具有340 mF/cm(2)的高比电容,在KOH/PVA固态电解质中,在0.04 mA/cm(2)时具有3 mF/cm(2)的比电容,在2000次循环后保留率为92.5%,在10000次循环后保留率为92.7%。这种性能比未改性的K2Ti4O9/Ti电极好几十倍。化学改性钛酸盐电极增强的性能可能为开发低成本、高性能和柔性超级电容器开辟新的机会。