Suppr超能文献

基于非线性生物力学模型的俯卧位和仰卧位 MRI 乳房图像配准方法。

A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images.

出版信息

IEEE Trans Med Imaging. 2014 Mar;33(3):682-94. doi: 10.1109/TMI.2013.2294539.

Abstract

Preoperative diagnostic magnetic resonance (MR) breast images can provide good contrast between different tissues and 3-D information about suspicious tissues. Aligning preoperative diagnostic MR images with a patient in the theatre during breast conserving surgery could assist surgeons in achieving the complete excision of cancer with sufficient margins. Typically, preoperative diagnostic MR breast images of a patient are obtained in the prone position, while surgery is performed in the supine position. The significant shape change of breasts between these two positions due to gravity loading, external forces and related constraints makes the alignment task extremely difficult. Our previous studies have shown that either nonrigid intensity-based image registration or biomechanical modelling alone are limited in their ability to capture such a large deformation. To tackle this problem, we proposed in this paper a nonlinear biomechanical model-based image registration method with a simultaneous optimization procedure for both the material parameters of breast tissues and the direction of the gravitational force. First, finite element (FE) based biomechanical modelling is used to estimate a physically plausible deformation of the pectoral muscle and the major deformation of breast tissues due to gravity loading. Then, nonrigid intensity-based image registration is employed to recover the remaining deformation that FE analyses do not capture due to the simplifications and approximations of biomechanical models and the uncertainties of external forces and constraints. We assess the registration performance of the proposed method using the target registration error of skin fiducial markers and the Dice similarity coefficient (DSC) of fibroglandular tissues. The registration results on prone and supine MR image pairs are compared with those from two alternative nonrigid registration methods for five breasts. Overall, the proposed algorithm achieved the best registration performance on fiducial markers (target registration error, 8.44 ±5.5 mm for 45 fiducial markers) and higher overlap rates on segmentation propagation of fibroglandular tissues (DSC value > 82%).

摘要

术前诊断性磁共振(MR)乳腺图像可以提供不同组织之间的良好对比度和可疑组织的 3-D 信息。在保乳手术中,将术前诊断性 MR 乳腺图像与患者在手术室中的位置进行配准,可以帮助外科医生实现癌症的完全切除,并留有足够的边缘。通常,患者的术前诊断性 MR 乳腺图像是在俯卧位获得的,而手术则是在仰卧位进行的。由于重力加载、外力和相关约束的影响,乳房在这两个位置之间的形状变化很大,使得配准任务变得极其困难。我们之前的研究表明,仅基于非刚性强度的图像配准或生物力学建模都无法完全捕捉到这种大变形。为了解决这个问题,我们在本文中提出了一种基于非线性生物力学模型的图像配准方法,该方法同时对乳腺组织的材料参数和重力方向进行了优化。首先,基于有限元(FE)的生物力学建模用于估计胸大肌的物理上合理的变形以及由于重力加载引起的乳腺组织的主要变形。然后,采用非刚性强度的图像配准来恢复由于生物力学模型的简化和近似以及外力和约束的不确定性,FE 分析无法捕捉到的剩余变形。我们使用皮肤基准标记的靶标配准误差和纤维腺体组织的 Dice 相似系数(DSC)来评估所提出方法的配准性能。对俯卧位和仰卧位 MR 图像对的配准结果与两种替代的非刚性配准方法进行了比较,共有五例乳房。总体而言,该算法在基准标记上的配准性能最佳(45 个基准标记的靶标配准误差为 8.44±5.5mm),在纤维腺体组织的分割传播上的重叠率更高(DSC 值>82%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验