Max Planck Institute for Solid State Research, Heisenbergstr. 1, Stuttgart, 70569, Germany.
Nanoscale. 2014 May 21;6(10):5081-6. doi: 10.1039/c3nr05329f.
Sodium-ion batteries are considered as prime alternatives to lithium-ion batteries for large-scale renewable energy storage units due to their low cost and the abundance of sodium bearing precursors in the earth's mineral deposits. In the current work, a 3D NASICON framework Na3V2(PO4)3/carbon cathode electrode with 20-30 nm Na3V2(PO4)3 nanoparticles uniformly encapsulated interconnecting one-dimensional carbon nanofibers was fabricated using a simple and scalable electrospinning method. The Na3V2(PO4)3/C cathode showed an initial charge capacity of 103 mA h g(-1) and a discharge capacity of 101 mA h g(-1) (calculated on the total mass of Na3V2(PO4)3 and carbon) at 0.1C rate, and retained stable discharge capacities of 77, 58, 39 and 20 mA h g(-1) at high current densities of 2C, 5C, 10C and 20C, respectively. Moreover, because of the efficient 1D sodium-ion transport pathway and the highly conductive network of Na3V2(PO4)3/C, the electrode exhibited high overall capacities even when cycled at high currents, extending its usability to high power applications.
钠离子电池由于其低成本以及地球矿物质中丰富的含钠前体,被认为是大规模可再生能源存储装置中锂离子电池的理想替代品。在目前的工作中,使用简单且可扩展的静电纺丝方法制备了一种具有 20-30nmNa3V2(PO4)3 纳米颗粒均匀包覆相互连接的一维碳纳米纤维的 3D NASICON 框架 Na3V2(PO4)3/碳正极电极。Na3V2(PO4)3/C 正极在 0.1C 倍率下的初始充电容量为 103 mA h g-1,放电容量为 101 mA h g-1(基于 Na3V2(PO4)3 和碳的总质量计算),在 2C、5C、10C 和 20C 的高电流密度下分别保持稳定的放电容量为 77、58、39 和 20 mA h g-1。此外,由于一维钠离子传输途径和 Na3V2(PO4)3/C 的高导电性网络,即使在高电流下循环,电极也表现出高的总容量,从而扩展了其在高功率应用中的可用性。