School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China.
Nanoscale Res Lett. 2014 Mar 4;9(1):107. doi: 10.1186/1556-276X-9-107.
Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically. A short-circuit current intensity of approximately 7 mA/cm2 and a light-to-electricity conversion efficiency of 0.95% were recorded for cells based on optimized nano-branched TiO2 arrays, indicating an increase of 138% compared to those based on unbranched TiO2 nanorod arrays. The improved performance is attributed to a markedly enlarged surface area provided by the nanobranches and better electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunks.
纳米树枝状锐钛矿 TiO2 纳米棒阵列通过低温下的简便两步湿化学合成工艺在 F:SnO2 导电玻璃(FTO)上生长。通过控制生长时间来调整纳米枝的长度,然后使用连续离子层吸附和反应法将 CdS 量子点沉积在纳米分支 TiO2 阵列上,以制造量子点敏化太阳能电池(QDSCs)的光阳极。系统研究了 CdS 敏化纳米分支 TiO2 太阳能电池的光伏性能。基于优化的纳米分支 TiO2 阵列的电池记录到约 7 mA/cm2 的短路电流强度和 0.95%的光电转换效率,与基于无分支 TiO2 纳米棒阵列的电池相比,增加了 138%。性能的提高归因于纳米枝提供的显著增大的表面积和一维、良好排列的 TiO2 纳米棒主干中的更好的电子导电性。