Suppr超能文献

眼跳预测的基线和适应性能之间的错误处理的相似性建立了联系。

Similarities in error processing establish a link between saccade prediction at baseline and adaptation performance.

机构信息

Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and

Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.

出版信息

J Neurophysiol. 2014 May;111(10):2084-93. doi: 10.1152/jn.00779.2013. Epub 2014 Mar 5.

Abstract

Adaptive processes are crucial in maintaining the accuracy of body movements and rely on error storage and processing mechanisms. Although classically studied with adaptation paradigms, evidence of these ongoing error-correction mechanisms should also be detectable in other movements. Despite this connection, current adaptation models are challenged when forecasting adaptation ability with measures of baseline behavior. On the other hand, we have previously identified an error-correction process present in a particular form of baseline behavior, the generation of predictive saccades. This process exhibits long-term intertrial correlations that decay gradually (as a power law) and are best characterized with the tools of fractal time series analysis. Since this baseline task and adaptation both involve error storage and processing, we sought to find a link between the intertrial correlations of the error-correction process in predictive saccades and the ability of subjects to alter their saccade amplitudes during an adaptation task. Here we find just such a relationship: the stronger the intertrial correlations during prediction, the more rapid the acquisition of adaptation. This reinforces the links found previously between prediction and adaptation in motor control and suggests that current adaptation models are inadequate to capture the complete dynamics of these error-correction processes. A better understanding of the similarities in error processing between prediction and adaptation might provide the means to forecast adaptation ability with a baseline task. This would have many potential uses in physical therapy and the general design of paradigms of motor adaptation.

摘要

自适应过程对于维持身体运动的准确性至关重要,依赖于错误存储和处理机制。尽管经典的适应性研究范式,但这些持续的纠错机制的证据也应该在其他运动中检测到。尽管存在这种联系,但当前的适应模型在使用基线行为的测量值预测适应能力时受到挑战。另一方面,我们之前已经确定了在一种特殊形式的基线行为中存在的纠错过程,即预测性扫视的生成。这个过程表现出长期的trial-to-trial 相关性,逐渐衰减(作为幂律),最好用分形时间序列分析的工具来描述。由于这个基线任务和适应都涉及到错误存储和处理,我们试图在预测性扫视的纠错过程的 trial-to-trial 相关性和受试者在适应任务中改变扫视幅度的能力之间找到联系。在这里,我们发现了这样一种关系:预测过程中的 trial-to-trial 相关性越强,适应的获取速度就越快。这加强了先前在运动控制中发现的预测和适应之间的联系,并表明当前的适应模型不足以捕捉这些纠错过程的完整动态。更好地理解预测和适应之间的错误处理相似性可能为使用基线任务预测适应能力提供一种手段。这将在物理治疗和运动适应范式的一般设计中具有许多潜在的用途。

相似文献

1
Similarities in error processing establish a link between saccade prediction at baseline and adaptation performance.
J Neurophysiol. 2014 May;111(10):2084-93. doi: 10.1152/jn.00779.2013. Epub 2014 Mar 5.
4
Two modes of error processing in reaching.
Exp Brain Res. 2009 Mar;193(3):337-50. doi: 10.1007/s00221-008-1629-9. Epub 2008 Nov 15.
5
Identifying sites of saccade amplitude plasticity in humans: transfer of adaptation between different types of saccade.
Exp Brain Res. 2010 Apr;202(1):129-45. doi: 10.1007/s00221-009-2118-5. Epub 2009 Dec 11.
6
Using prediction errors to drive saccade adaptation: the implicit double-step task.
Exp Brain Res. 2012 Oct;222(1-2):55-64. doi: 10.1007/s00221-012-3195-4. Epub 2012 Aug 1.
7
Short-term adaptation of electrically induced saccades in monkey superior colliculus.
J Neurophysiol. 1996 Sep;76(3):1744-58. doi: 10.1152/jn.1996.76.3.1744.
8
Elimination of the error signal in the superior colliculus impairs saccade motor learning.
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):E8987-E8995. doi: 10.1073/pnas.1806215115. Epub 2018 Sep 5.
9
Brain processing of visual information during fast eye movements maintains motor performance.
PLoS One. 2013;8(1):e54641. doi: 10.1371/journal.pone.0054641. Epub 2013 Jan 29.
10
Saccade adaptation improves in response to a gradually introduced stimulus perturbation.
Neurosci Lett. 2011 Aug 18;500(3):207-11. doi: 10.1016/j.neulet.2011.06.039. Epub 2011 Jun 29.

引用本文的文献

3
Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
Exp Brain Res. 2018 Aug;236(8):2137-2155. doi: 10.1007/s00221-018-5289-0. Epub 2018 May 19.
4
Predictive saccades in children and adults: A combined fMRI and eye tracking study.
PLoS One. 2018 May 2;13(5):e0196000. doi: 10.1371/journal.pone.0196000. eCollection 2018.
5
Assessing Somatosensory Utilization during Unipedal Postural Control.
Front Syst Neurosci. 2017 Apr 11;11:21. doi: 10.3389/fnsys.2017.00021. eCollection 2017.
6
Strength of baseline inter-trial correlations forecasts adaptive capacity in the vestibulo-ocular reflex.
PLoS One. 2017 Apr 5;12(4):e0174977. doi: 10.1371/journal.pone.0174977. eCollection 2017.
8
A switching cost for motor planning.
J Neurophysiol. 2016 Dec 1;116(6):2857-2868. doi: 10.1152/jn.00319.2016. Epub 2016 Sep 21.
9
Saccadic adaptation to a systematically varying disturbance.
J Neurophysiol. 2016 Aug 1;116(2):336-50. doi: 10.1152/jn.00206.2016. Epub 2016 Apr 20.
10
Enhancing astronaut performance using sensorimotor adaptability training.
Front Syst Neurosci. 2015 Sep 16;9:129. doi: 10.3389/fnsys.2015.00129. eCollection 2015.

本文引用的文献

1
Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.
Nat Neurosci. 2014 Feb;17(2):312-21. doi: 10.1038/nn.3616. Epub 2014 Jan 12.
2
Model-based and model-free mechanisms of human motor learning.
Adv Exp Med Biol. 2013;782:1-21. doi: 10.1007/978-1-4614-5465-6_1.
3
Random walk of motor planning in task-irrelevant dimensions.
J Neurophysiol. 2013 Feb;109(4):969-77. doi: 10.1152/jn.00706.2012. Epub 2012 Nov 21.
4
Using prediction errors to drive saccade adaptation: the implicit double-step task.
Exp Brain Res. 2012 Oct;222(1-2):55-64. doi: 10.1007/s00221-012-3195-4. Epub 2012 Aug 1.
5
Measuring fractality.
Front Physiol. 2012 May 7;3:127. doi: 10.3389/fphys.2012.00127. eCollection 2012.
6
The relative importance of retinal error and prediction in saccadic adaptation.
J Neurophysiol. 2012 Jun;107(12):3342-8. doi: 10.1152/jn.00746.2011. Epub 2012 Mar 21.
7
Exploring the fundamental dynamics of error-based motor learning using a stationary predictive-saccade task.
PLoS One. 2011;6(9):e25225. doi: 10.1371/journal.pone.0025225. Epub 2011 Sep 23.
8
The role of the cerebellum in saccadic adaptation as a window into neural mechanisms of motor learning.
Eur J Neurosci. 2011 Jun;33(11):2114-28. doi: 10.1111/j.1460-9568.2011.07693.x.
10
Fractal fluctuations in gaze speed visual search.
Atten Percept Psychophys. 2011 Apr;73(3):666-77. doi: 10.3758/s13414-010-0069-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验