Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
Phys Chem Chem Phys. 2014 Apr 14;16(14):6496-507. doi: 10.1039/c3cp55275f. Epub 2014 Mar 7.
Understanding protein folding and function is one of the most important problems in biological research. Energy landscape theory and the folding funnel concept have provided a framework to investigate the mechanisms associated to these processes. Since protein energy landscapes are in most cases minimally frustrated, structure based models (SMBs) have successfully determined the geometrical features associated with folding and functional transitions. However, structural information is limited, particularly with respect to different functional configurations. This is a major limitation for SBMs. Alternatively, statistical methods to study amino acid co-evolution provide information on residue-residue interactions useful for the study of structure and function. Here, we show how the combination of these two methods gives rise to a novel way to investigate the mechanisms associated with folding and function. We use this methodology to explore the mechanistic aspects of protein translocation in the integral membrane protease FtsH. Dual basin-SBM simulations using the open and closed state of this hexameric motor reveals a functionally important paddling motion in the catalytic cycle. We also find that Direct Coupling Analysis (DCA) predicts physical contacts between AAA and peptidase domains of the motor, which are crucial for the open to close transition. Our combined method, which uses structural information from the open state experimental structure and co-evolutionary couplings, suggests that this methodology can be used to explore the functional landscape of complex biological macromolecules previously inaccessible to methods dependent on experimental structural information. This efficient way to sample the conformational space of large systems creates a theoretical/computational framework capable of better characterizing the functional landscape in large biomolecular assemblies.
理解蛋白质折叠和功能是生物学研究中最重要的问题之一。能量景观理论和折叠漏斗概念为研究与这些过程相关的机制提供了一个框架。由于蛋白质能量景观在大多数情况下是最小受挫的,基于结构的模型(SMB)已经成功地确定了与折叠和功能转变相关的几何特征。然而,结构信息是有限的,特别是在不同的功能配置方面。这是 SMB 的主要限制。另一方面,研究氨基酸共进化的统计方法提供了与结构和功能研究相关的残基-残基相互作用的信息。在这里,我们展示了如何将这两种方法结合起来,为研究与折叠和功能相关的机制提供一种新的方法。我们使用这种方法来研究整合膜蛋白酶 FtsH 中蛋白转运的机制方面。使用该六聚体马达的开放和关闭状态进行双盆地-SMB 模拟揭示了催化循环中功能重要的划桨运动。我们还发现,直接耦合分析(DCA)预测了马达的 AAA 和肽酶结构域之间的物理接触,这对于开放到关闭的转变至关重要。我们的组合方法利用了开放状态实验结构和共进化耦合的结构信息,表明该方法可用于探索以前无法通过依赖实验结构信息的方法访问的复杂生物大分子的功能景观。这种对大系统构象空间进行高效采样的方法为大生物分子组装体的功能景观提供了一个理论/计算框架,能够更好地进行特征描述。