Suppr超能文献

AAA3结构域在动力蛋白变构通讯中的作用

Role of AAA3 Domain in Allosteric Communication of Dynein Motor Proteins.

作者信息

Dutta Mandira, Jana Biman

机构信息

School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.

出版信息

ACS Omega. 2019 Dec 3;4(26):21921-21930. doi: 10.1021/acsomega.9b02946. eCollection 2019 Dec 24.

Abstract

Cytoplasmic dynein, an AAA+ motif containing motor, generates force and movement along the microtubule to execute important biological functions including intracellular material transport and cell division by hydrolyzing ATP. Among the six AAA+ domains, AAA1 is the primary ATPase site where a single ATP hydrolysis generates a single step. Nucleotide states in AAA3 gate dynein's activity, suggesting that AAA3 acts as a regulatory switch. However, the comprehensive structural perspective of AAA3 in dynein's mechanochemical cycle remains unclear. Here, we explored the allosteric transition path of dynein involving AAA3 using a coarse-grained structure-based model. ATP binding to the AAA1 domain creates a cascade of conformational changes through the other domains of the ring, which leads to the pre-power stroke formation. The linker domain, which is the mechanical element of dynein, shifts from a straight to a bent conformation during this process. In our present study, we observe that AAA3 gates the allosteric communication from AAA1 to the microtubule binding domain (MTBD) through AAA4 and AAA5. The MTBD is linked to the AAA+ ring via a coiled-coil stalk and a buttress domain, which are extended from AAA4 and AAA5, respectively. Further analysis also uncovers the role of AAA3 in the linker movement. The free energy calculation shows that the linker prefers the straight conformation when AAA3 remains in the ATP-bound condition. As AAA3 restricts the motion of AAA4 and AAA5, the linker/AAA5 interactions get stabilized, and the linker cannot move to the pre-power stroke state that halts the complete structural transition required for the mechanochemical cycle. Therefore, we suggest that AAA3 governs dynein's mechanochemical cycle and motility by controlling the AAA4 and AAA5 domains that further regulate the linker movement and the power stroke formation.

摘要

细胞质动力蛋白是一种含有AAA+基序的马达蛋白,通过水解ATP沿着微管产生力和运动,以执行重要的生物学功能,包括细胞内物质运输和细胞分裂。在六个AAA+结构域中,AAA1是主要的ATP酶位点,单个ATP水解产生一个单步。AAA3中的核苷酸状态控制着动力蛋白的活性,这表明AAA3起到了调节开关的作用。然而,动力蛋白机械化学循环中AAA3的全面结构视角仍不清楚。在这里,我们使用基于粗粒度结构的模型探索了涉及AAA3的动力蛋白变构转变路径。ATP与AAA1结构域结合会通过环的其他结构域引发一系列构象变化,从而导致动力冲程前的构象形成。连接结构域是动力蛋白的机械元件,在此过程中从直线构象转变为弯曲构象。在我们目前的研究中,我们观察到AAA3通过AAA4和AAA5控制从AAA1到微管结合结构域(MTBD)的变构通讯。MTBD通过分别从AAA4和AAA5延伸的卷曲螺旋柄和支撑结构域与AAA+环相连。进一步的分析还揭示了AAA3在连接结构域运动中的作用。自由能计算表明,当AAA3处于ATP结合状态时,连接结构域更倾向于直线构象。由于AAA3限制了AAA4和AAA5的运动,连接结构域/AAA5相互作用得以稳定,连接结构域无法移动到动力冲程前的状态,从而阻止了机械化学循环所需的完整结构转变。因此,我们认为AAA3通过控制AAA4和AAA5结构域来调节动力蛋白的机械化学循环和运动性,而AAA4和AAA5结构域进一步调节连接结构域的运动和动力冲程的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e08/6933798/c97ee08a3a5b/ao9b02946_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验