Suppr超能文献

用于改进1H NMR分析中重叠信号光谱解卷积的独立成分分析(ICA)算法:在食品及相关产品中的应用

Independent component analysis (ICA) algorithms for improved spectral deconvolution of overlapped signals in 1H NMR analysis: application to foods and related products.

作者信息

Monakhova Yulia B, Tsikin Alexey M, Kuballa Thomas, Lachenmeier Dirk W, Mushtakova Svetlana P

机构信息

Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187, Karlsruhe, Germany; Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012, Saratov, Russia; Bruker Biospin GmbH, Silberstreifen, 76287, Rheinstetten, Germany.

出版信息

Magn Reson Chem. 2014 May;52(5):231-40. doi: 10.1002/mrc.4059. Epub 2014 Mar 7.

Abstract

The major challenge facing NMR spectroscopic mixture analysis is the overlapping of signals and the arising impossibility to easily recover the structures for identification of the individual components and to integrate separated signals for quantification. In this paper, various independent component analysis (ICA) algorithms [mutual information least dependent component analysis (MILCA); stochastic non-negative ICA (SNICA); joint approximate diagonalization of eigenmatrices (JADE); and robust, accurate, direct ICA algorithm (RADICAL)] as well as deconvolution methods [simple-to-use-interactive self-modeling mixture analysis (SIMPLISMA) and multivariate curve resolution-alternating least squares (MCR-ALS)] are applied for simultaneous (1)H NMR spectroscopic determination of organic substances in complex mixtures. Among others, we studied constituents of the following matrices: honey, soft drinks, and liquids used in electronic cigarettes. Good quality spectral resolution of up to eight-component mixtures was achieved (correlation coefficients between resolved and experimental spectra were not less than 0.90). In general, the relative errors in the recovered concentrations were below 12%. SIMPLISMA and MILCA algorithms were found to be preferable for NMR spectra deconvolution and showed similar performance. The proposed method was used for analysis of authentic samples. The resolved ICA concentrations match well with the results of reference gas chromatography-mass spectrometry as well as the MCR-ALS algorithm used for comparison. ICA deconvolution considerably improves the application range of direct NMR spectroscopy for analysis of complex mixtures.

摘要

核磁共振波谱混合物分析面临的主要挑战是信号重叠,以及难以轻易恢复用于识别单个成分的结构并对分离信号进行积分以进行定量。本文将各种独立成分分析(ICA)算法[互信息最小相关成分分析(MILCA);随机非负ICA(SNICA);特征矩阵联合近似对角化(JADE);稳健、准确、直接ICA算法(RADICAL)]以及反卷积方法[易用交互式自建模混合物分析(SIMPLISMA)和多元曲线分辨交替最小二乘法(MCR-ALS)]应用于复杂混合物中有机物质的同时¹H核磁共振波谱测定。其中,我们研究了以下基质的成分:蜂蜜、软饮料和电子烟中使用的液体。实现了高达八组分混合物的高质量光谱分辨率(分辨光谱与实验光谱之间的相关系数不小于0.90)。一般来说,回收浓度的相对误差低于12%。发现SIMPLISMA和MILCA算法在核磁共振波谱反卷积方面更具优势,且表现相似。所提出的方法用于真实样品的分析。分辨出的ICA浓度与参考气相色谱-质谱结果以及用于比较的MCR-ALS算法结果匹配良好。ICA反卷积大大扩展了直接核磁共振波谱在复杂混合物分析中的应用范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验