Laboratoire de Mécanique des Fluides et d'Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully cedex, France.
J Acoust Soc Am. 2014 Mar;135(3):1083-95. doi: 10.1121/1.4864793.
The feasibility of using numerical simulation of fluid dynamics equations for the detailed description of long-range infrasound propagation in the atmosphere is investigated. The two dimensional (2D) Navier Stokes equations are solved via high fidelity spatial finite differences and Runge-Kutta time integration, coupled with a shock-capturing filter procedure allowing large amplitudes to be studied. The accuracy of acoustic prediction over long distances with this approach is first assessed in the linear regime thanks to two test cases featuring an acoustic source placed above a reflective ground in a homogeneous and weakly inhomogeneous medium, solved for a range of grid resolutions. An atmospheric model which can account for realistic features affecting acoustic propagation is then described. A 2D study of the effect of source amplitude on signals recorded at ground level at varying distances from the source is carried out. Modifications both in terms of waveforms and arrival times are described.
研究了使用流体动力学方程的数值模拟来详细描述大气中长距离次声传播的可行性。通过高保真度的空间有限差分和龙格库塔时间积分求解二维(2D)纳维-斯托克斯方程,并结合一个激波捕捉滤波器程序,允许研究大振幅。通过两种测试案例,在均匀和弱非均匀介质中,在声学源上方放置一个反射地面,在一系列网格分辨率下求解,首先在线性范围内评估了这种方法在长距离上进行声学预测的准确性。然后描述了一个可以考虑影响声传播的实际特征的大气模型。进行了 2D 研究,以研究在不同距离处从声源记录到的地面水平信号的源幅度的影响。描述了在波形和到达时间方面的变化。